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ABSTRACT
Security professionals rely extensively on log data to monitor IT
infrastructures and investigate potentially malicious activities. Ex-
isting systems support these tasks by collecting log messages in
a database, from where log events can be queried and correlated.
Such centralized approaches are typically based on a relational
model and store log messages as plain text, which offers limited
flexibility for the representation of heterogeneous log events and
the connections between them. A knowledge graph representation
can overcome such limitations and enable graph pattern-based log
analysis, leveraging semantic relationships between objects that
appear in heterogeneous log streams. In this paper, we present a
method to dynamically construct such log knowledge graphs at
query time, i.e., without a priori parsing, aggregation, processing,
and materialization of log data. Specifically, we propose a method
that – for a given query formulated in SPARQL – dynamically con-
structs a virtual log knowledge graph directly from heterogeneous
raw log files across multiple hosts and contextualizes the result
with internal and external background knowledge. We evaluate the
approach across multiple heterogeneous log sources and machines
and see encouraging results that indicate that the approach is viable
and facilitates ad-hoc graph-analytic queries in federated settings.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and mal-
ware mitigation; Vulnerability management; • Information sys-
tems → Query reformulation; Information extraction; Graph-based
database models.
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1 INTRODUCTION
Log data analysis is a crucial task in cybersecurity, e.g., when moni-
toring and auditing systems, collecting threat intelligence, conduct-
ing forensic investigations of incidents, and pro-actively hunting
threats [4]. Currently available log analysis solutions, such as Secu-
rity Information and Event Management (SIEM) systems, support the
process by aggregating log data as well as storing and indexing log
messages in a central relational database [12]. Such databases, how-
ever, have limitations with respect to the ability to express relations
between entities [16]. Without explicit links between log entries in
various log sources, it is difficult to integrate the partial and isolated
views on system states and activities reflected in the various logs
and to contextualize, link, and query log data. In large-scale infras-
tructures, the central collection model is also bandwidth-intensive
and computationally demanding [7, 8, 12].

In this paper, we propose a decentralized approach for log anal-
ysis that is flexible, knowledge-based, and scalable. Specifically,
we introduce a method to execute federated, graph pattern-based
queries on dispersed, heterogeneous raw log data by dynamically
constructing virtual knowledge graphs [21, 22]. To this end, we
introduce a method that (i) federates graph-pattern based queries
across endpoints, (ii) extracts only potentially relevant log mes-
sages, (iii) integrates the dispersed log events into a common graph,
and (iv) links them to background knowledge. All of these steps
are executed at query time without any up-front ingestion and
conversion of log messages.

A key advantage of the graph-based model is that it provides a
concise, flexible, and intuitive abstraction for the representation
of various relations – e.g., connections in networked systems, hi-
erarchies of processes on endpoints, associations between users
and services, and chains of indicators of compromise. These con-
nections automatically link log messages that are related through

https://doi.org/10.1145/3465481.3465767
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Figure 1: Concept overview

common entities (such as users, hosts, and IP addresses); they are
crucial in cybersecurity investigations, as threat agent activities
typically leave digital traces in various log files that are often spread
across multiple endpoints in a network, particularly in discovery,
lateral movement, and exfiltration stages of an attack [1].

In contrast to a traditional workflow that stores log messages in a
centralized repository, the proposed approach shifts the log parsing
workload from ingest to analysis time. This enables the use of the
most granular, original raw log data without loss of information
that would occur when pre-filtering and aggregating the logs before
transferring them to a central archive, thus complementing existing
log analysis approaches. Figure 1 illustrates the proposed approach
for ad-hoc knowledge graph construction; the virtual log knowledge
graph at the center of the figure is dynamically constructed from
dispersed log sources based on analysts’ queries and linked to
external and internal knowledge sources.

To sum up, our contributions in this paper are as follows: We
tackle current challenges in security log analysis (discussed in Sec-
tion 3) by means of a Virtual Knowledge Graph (VKG) framework
for federated log analysis that facilitates (i) ad-hoc integration and
semantic analyses on raw log data without prior centralized ma-
terialization, (ii) the collection of evidence-based knowledge from
heterogeneous log sources, (iii) automated linking of fragmented
knowledge about system states and activities, and (iv) automated
linking to external security knowledge (such as, e.g., attack patterns,
threat implications, actionable advice).

The remainder of this paper is structured as follows: Section 2
provides an overview of related work; in Section 3, we discuss
challenges in log analysis and derive requirements for our approach;
Section 4 introduces the proposed architecture and components
for virtual log knowledge graph construction; Section 5 describes
our prototypical implementation and illustrates its use through
example queries. Finally, we evaluate our approach in Section 6 and
conclude with an outlook on future work in Section 7.

2 RELATEDWORK
In this section, we discuss closely related work on the subjects of
log management and analytics that we selected from the following
categories that are particularly relevant in the context of our work1:

Centralized Security Log Analysis. A variety of conceptual
approaches for centralized security log processing and correlation
have been proposed in the literature. For forensic purposes, [2] pro-
poses topological data analysis (TDA) to improve firewall forensics

1Due to space restrictions, we can only make illustrative references.

at the enterprise level. This approach employs statistical, graph-
based, and visual methods for anomaly detection and interpretation.
Like other similar approaches, it does not aim to integrate multiple
log sources and to find links between them, but focuses on a single,
highly structured, log source (i.e., firewall logs).

To learn and detect attack patterns from multiple log sources
(i.e., firewall and web access log), [19] aggregates log sources into a
centralized database before processing it in a rule correlation en-
gine. Compared to our approach, the scope of existing approaches is
typically limited and does not include linking to background knowl-
edge. Contributions such as [17] propose log analysis approaches
specific to cloud environments. In the latter, log events are identi-
fied and summarized before they are persisted into a centralized
NoSQL database, where a Complex Event Processing (CEP) engine
performs correlation and condensation. This approach specifically
focuses on Syslog messages.

Somewhat closer to the approach in the present paper, [12] pro-
pose a hybrid relational-ontological architecture to overcome re-
striction in SIEMs (e.g., cross-domain, schema-complexity, scalabil-
ity). The approach combines existing relational SIEM data reposi-
tories with external vulnerability information, i.e., Common Vul-
nerabilities and Exposures (CVE). The evaluation shows that the
ontological approach can reduce the computation load compared
to using a relational schema only.

Decentralized Security log analysis. Decentralized event cor-
relation for intrusion detection was introduced in early work such
as [13], where the authors propose a specification language to de-
scribe intrusions in a distributed pattern and use a peer-to-peer
system to detect attacks. In this decentralized approach, the focus
is on individual Intrusion Detection System (IDS) events only. To
address scalability limitations of centralized log processing, [7]
distributes correlation workloads across networks to the event-
producing hosts. Similar to this approach, we aim to tackle chal-
lenges of centralized log analysis. However, we leverage semantic
web technologies to also provide contextualization and linking to
external background knowledge. In the cloud environment, [23]
proposes a distributed and parallel security log analysis framework
that provides analyses of a massive number of systems, networks,
and transaction logs in a scalable manner. It utilizes the two-level
master-slave model to distribute, execute, and harvest tasks for log
analysis. The framework is specific to cloud-based infrastructures
and lacks the graph-oriented data model and contextualization and
querying capabilities of our approach.

Semantic Log Data Virtualization. As an example for seman-
tic approaches, [10] leverages an ontology to correlate alerts from
multiple IDSs with the goal to reduce the number of false-positive
and false-negative alerts. It relies on a shared vocabulary to facili-
tate security information exchange (e.g., IDMEF, STIX, TAXII), but
does not facilitate linking to other log sources that may contain
indicators of attacks (e.g., authentication, file access, etc.).

To create a foundation for semantic SIEMs, [18] introduces a
Security Strategy Meta-Model (SSMM) to enable interrelating in-
formation from different domains and abstraction levels in SIEMs.
To facilitate log integration, contextualization and linking to back-
ground knowledge, [5] proposes a modular log vocabulary that en-
ables log harmonization and integration between heterogeneous log



Virtual Knowledge Graphs for Federated Log Analysis ARES 2021, August 17–20, 2021, Vienna, Austria

sources. A recent approach proposed in [14] introduces a vocabu-
lary and architecture to collect, extract, and correlate heterogeneous
low-level file access events from Linux and Windows event logs.
Using SPARQL queries, the extracted events can be constructed
and linked to background knowledge. Compared to the approach
in this paper, the approaches discussed so far rely on a centralized
repository. A methodologically similar approach for log analysis
outside of the security domain has also been introduced in [3],
which leverages ontology-based data access to support log extrac-
tion and data preparation on legacy information systems for process
mining. They focus on log data from legacy systems in existing
relational schemas and on ontology-based query translation.

3 REQUIREMENTS
Existing log management systems typically ingest log sources from
multiple log-producing endpoints and store them in a central repos-
itory for further processing. They then index and parse these logs
collected from various sources before they can be analyzed. There-
fore, such log management systems typically require considerable
amounts of disk space to store the data as well as computational
power for log analysis, which limits their scalability (due to concen-
trated network bandwidth, CPU, memory, and disk space require-
ments).

Decentralized log analysis, by contrast, (partly) shifts the compu-
tational workloads involved in log pre-processing (e.g., acquisition,
extraction, and parsing) and analysis to the log-producing hosts [7].
This model has the potential for higher scalability and applicability
in large-scale settings where the scope of the infrastructure pro-
hibits effective centralization of all potentially relevant log sources
in a single repository.

Existing approaches for decentralized log processing, however,
primarily aim to provide correlation and alerting capabilities, rather
than the ability to query dispersed log data in a decentralized man-
ner. Furthermore, they lack effectivemeans for semantic integration,
contextualization, and linking, i.e., dynamically creating connec-
tions between entities and potentially involving externally available
security information. They also typically have to ingest all log data
continuously on the local endpoints, which may consume a lot of
resources across the infrastructure.

In this paper, we tackle these challenges and propose a distributed
approach for security log integration and analysis. Thereby, we
facilitate ad hoc querying of dispersed raw log sources without prior
central ingest and aggregation in order to address the following
requirements (R):

• R.1 - Resource-efficiency avoid unnecessary log process-
ing (acquisition, extraction, and parsing) and minimize re-
source requirements in terms of centralized storage space
and network bandwidth.
• R.2 - Aggregation and integration over multiple end-
points ability to execute federated queries across multiple
monitoring endpoints concurrently and deliver integrated
results.
• R.3 - Integration, Contextualization&Background-Linking
ability to contextualize disparate log information, integrate
it, and link it to background knowledge and external security
information.

• R.4 - Standards-based query language use of an expres-
sive, standard based-query language for log analysis.

4 VIRTUAL LOG GRAPH ARCHITECTURE
Using the requirements set out in Section 3, we propose an ap-
proach and architecture for security log analytics based on the
concept of VKGs. The proposed approach leverages Semantic Web
Technologies that provide (i) a standardized graph-based data rep-
resentation to describe data and their relationships flexibly using
the Resource Description Framework (RDF)2, (ii) semantic linking
and alignment to integrate multiple heterogeneous log data and
other resources (e.g., internal/external background knowledge), and
(iii) a standardized semantic query language (i.e. SPARQL3) to re-
trieve and manipulate RDF data. SPARQL has a wide expressivity
to perform complex querying (e.g., aggregation, subqueries, and
negation).

To address R.1, our approach does not rely on centralized log
processing, i.e., we only extract relevant log events based on the
temporal scope and structure of a given query and its query parame-
ters. Specifically, we only extract lines in a log file that (i) are within
the temporal scope of the query, and (ii) may contain relevant in-
formation based on the specified query parameters and filters. The
identified log lines are extracted, parsed, lifted to RDF, compressed,
and temporally stored in a local cache on the respective endpoint.
This approach implements the concept of data virtualization and
facilitates on-demand log processing. By shifting computational
load to individual monitoring agents and only extracting log entries
that are relevant for a given query, this approach can significantly
reduce unnecessary log data processing. Furthermore, due to the
use of RDF-file compression technique, the transferred RDF data
is rather small and does not require vast volumes of centralized
storage. We discuss this further in Section 6.

Semantic web technologies also provide a mechanism for dis-
tributed querying through query federation4. We leverage this
ability to query multiple log sources across distributed endpoints
and to combine the results in a single integrated output, addressing
R.2.

To address R.3, we interlink and contextualize our extracted log
data using internal/external background knowledge (e.g., IT asset
information and cybersecurity knowledge) via semantic linking
and alignment.

Finally, we use SPARQL to formulate queries and perform log
analysis against the processed log data, which addresses R.4. We
show the application scenarios for SPARQL query federation and
contextualization in Section 5.

Figure 2 illustrates the resulting virtual log graph and query fed-
eration architecture for log analysis; it comprises two main com-
ponents: (i) a Query Processor, which provides an interface to
formulate SPARQL queries and distributes the queries among in-
dividual endpoints to retrieve, integrate, and present the resulting
data sets (log graph) from each endpoint, and (ii) a Log Parser on
each host, which receives and translates queries, extracts raw log

2https://www.w3.org/RDF/
3https://www.w3.org/TR/rdf-sparql-query/
4https://www.w3.org/TR/sparql11-service-description/

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
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Figure 2: Virtual log graph and query federation architecture

data from hosts, parses the extracted log data into an RDF repre-
sentation, compresses the resulting RDF data into a binary format,
and sends the results back to the Query Processor. In the following,
we explain the individual components in detail.

SPARQLQuery Editor. This subcomponent is part of theQuery
Processor that allows users to formulate and execute SPARQL queries
against hosts. The query editor allows analysts to define settings
for query execution, including: (i) Target Hosts: a collection of end-
points which should be considered in the log analysis, (ii) Knowledge
bases: a collection of internal and/or external sources of background
knowledge that should be included in the query execution (e.g. IT
infrastructure, CTI knowledge base, etc.), (iii) Time Interval: the
time range of interest for the log analysis (i.e., start time and end
time).

Query Parsing. Since the SPARQL query specification [9] pro-
vides a number of alternative syntaxes to formulate queries, we
parse the raw SPARQL syntax into a structured format for eas-
ier access to the properties and variables inside the query, prior
to transferring the query to the monitoring hosts. The prepared
SPARQL query is then sent as a parameter to the Query Translator
via theWeb API in the Log Parser Component.

QueryTranslation. This subcomponent decomposes the SPARQL
query to identify relevant properties for log source selection and log
line matching. Algorithm 1 outlines the general query translation
procedure, which identifies relevant log sources and log lines based
on three criteria, i.e., (i) prefixes used in the query, (ii) triples, and
(iii) filters.

𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 (𝑃) is a set of log vocabulary prefixes that appear in
a given query 𝑄 . In each query, the contained prefixes will be
used by the query translator to identify relevant log sources. Avail-
able prefixes can be configured to the respected log sources in
the Log Parser configuration on each client, including, e.g., the
path to the local log file location. As an example, PREFIX auth:
<http://w3id.org/authLog> is the prefix for 𝐴𝑢𝑡ℎ𝐿𝑜𝑔; it’s pres-
ence in a query indicates that the 𝐴𝑢𝑡ℎ𝐿𝑜𝑔 on the selected hosts
will be included in the log processing.

𝑇𝑟𝑖𝑝𝑙𝑒𝑠 (𝑇 ) is a set of triples that appear in a query, each repre-
sented as Triple Pattern or a Basic Graph Pattern (BGP) (i.e. <Subject>

Algorithm 1: Query translation
Input: SPARQL Query (𝑄 ), Vocabulary (𝑉 ), regexPatterns (𝑅𝑃 )
Output: QueryElements (𝑄𝑒)

1 Prefixes 𝑃 = {𝑃1 ,...,𝑃𝑛 } 𝜖 𝑄 ;
2 Triples𝑇 = {𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 , 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ,𝑂𝑏 𝑗𝑒𝑐𝑡 } 𝜖 𝑄 ;
3 Filters 𝐹 = {𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ,𝑉𝑎𝑙𝑢𝑒} 𝜖 𝑄 ;
4 Function translateQuery(𝑄 ,𝑉 ,𝑅𝑃):
5 𝑃 ← 𝑔𝑒𝑡𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝑄);
6 𝑇 ← 𝑔𝑒𝑡𝑇𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑄);
7 foreach Triple𝑇𝑖 𝜖 𝑇 do
8 if 𝑡𝑦𝑝𝑒(𝑇𝑖𝑂𝑏 𝑗𝑒𝑐𝑡 )=Literal then
9 𝑙𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦← 𝑔𝑒𝑡𝐿𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑇𝑖𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ,𝑉 ,𝑅𝑃 );

10 𝑘𝑒𝑦𝑉𝑎𝑙𝑢𝑒← {𝑙𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦,𝑇𝑖𝑂𝑏 𝑗𝑒𝑐𝑡 };
11 end
12 𝑡𝑟𝑖𝑝𝑙𝑒𝑠𝐾𝑉 += 𝑘𝑒𝑦𝑉𝑎𝑙𝑢𝑒 ;
13 end
14 𝐹 ← 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 (𝑄 );
15 foreach Filter 𝐹𝑖 𝜖 𝐹 do
16 if 𝑡𝑦𝑝𝑒(𝐹𝑖𝑉𝑎𝑙𝑢𝑒 )=Literal then
17 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒← 𝑔𝑒𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝑄 ,𝐹𝑖𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 );
18 𝑙𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦← 𝑔𝑒𝑡𝐿𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ,𝑉 ,𝑅𝑃 );
19 𝑘𝑒𝑦𝑉𝑎𝑙𝑢𝑒← {𝑙𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝐹𝑖𝑉𝑎𝑙𝑢𝑒 };
20 end
21 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠𝐾𝑉 += 𝑘𝑒𝑦𝑉𝑎𝑙𝑢𝑒 ;
22 end
23 𝑄𝑒← {𝑃 ,𝑡𝑟𝑖𝑝𝑙𝑒𝑠𝐾𝑉 ,𝑓 𝑖𝑙𝑡𝑒𝑟𝑠𝐾𝑉 };
24 return𝑄𝑒 ;
25 End Function

<Predicate> <Object>). We match these triples to log lines (e.g.,
hosts and users) as follows: Function 𝑔𝑒𝑡𝑇𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑄) collects
the triple patterns 𝑇 contained within the query 𝑄 . For each triple
statement in a query, we identify the type of Object𝑇𝑖𝑂𝑏𝑗𝑒𝑐𝑡 . If the
type is 𝐿𝑖𝑡𝑒𝑟𝑎𝑙 , we identify the 𝑇𝑖𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 as well. For example, for
the triple {?Subject cl:originatesFrom "Host1"}, the func-
tion 𝑔𝑒𝑡𝐿𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 () identifies 𝑇𝑖𝑂𝑏𝑗𝑒𝑐𝑡 "Host1", and additionally,
looks up the property range provided in 𝑟𝑒𝑔𝑒𝑥𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (𝑅𝑃).

𝑟𝑒𝑔𝑒𝑥𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (𝑅𝑃)5 is the background knowledge that links
property terms in a vocabulary to the terms in a log entry and
the respected regular expression pattern. For example, the prop-
erty 𝑐𝑙 : 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑠𝐹𝑟𝑜𝑚 is linked to the concept "hostname" in
𝑟𝑒𝑔𝑒𝑥𝑃𝑎𝑡𝑡𝑒𝑟𝑛 (𝑅𝑃), which has a connected regex pattern for the

5https://github.com/sepses/VloGParser/blob/hdt-version/experiment/
pattern/regexPattern.ttl

https://github.com/sepses/VloGParser/blob/hdt-version/experiment/pattern/regexPattern.ttl
https://github.com/sepses/VloGParser/blob/hdt-version/experiment/pattern/regexPattern.ttl
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Figure 3: SPARQL Query translation example

extraction of host names. The output of the 𝑔𝑒𝑡𝐿𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 () func-
tion is a set of <𝑙𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑇𝑖𝑂𝑏𝑗𝑒𝑐𝑡 > key-value pairs.

Similar to triples, we also include 𝐹𝑖𝑙𝑡𝑒𝑟𝑠 (𝐹 ) that appear in
a query 𝑄 for log-line matching. Filter statements contain the
term FILTER and a set of pairs (i.e., 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 and 𝑉𝑎𝑙𝑢𝑒), there-
fore each 𝐹𝑖𝑙𝑡𝑒𝑟 statement 𝐹𝑖 has the members 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐹𝑖𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
and𝑉𝑎𝑙𝑢𝑒 𝐹𝑖𝑉𝑎𝑙𝑢𝑒 . Currently, we cover FILTER with simple pattern
matching and regular expressions such as 𝐹𝐼𝐿𝑇𝐸𝑅 (?𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =

”𝑆𝑡𝑟𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒”), 𝐹𝐼𝐿𝑇𝐸𝑅 𝑟𝑒𝑔𝑒𝑥 (𝑠𝑡𝑟 (?𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒), ”𝑆𝑡𝑟𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒”)). The
function𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 (𝑄) is used to retrieve these filter state-
ments from the query and to identify the type of 𝑉𝑎𝑙𝑢𝑒 𝐹𝑖𝑉𝑎𝑙𝑢𝑒 .
If it is a Literal, the 𝑔𝑒𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑄) function will look for the
connected 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 . Similar to the technique used in triples, we
use 𝑔𝑒𝑡𝐿𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 () to retrieve the regular expression defined in
𝑟𝑒𝑔𝑒𝑥𝑃𝑎𝑡𝑡𝑒𝑟𝑛 (𝑅𝑃).

Finally, the collected prefixes and retrieved key-value pairs, both
from triples and filters, will be stored in 𝑄𝑢𝑒𝑟𝑦𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑄𝑒) for
further processing. Figure 3 depicts a SPARQL query translation
example.

Log Extraction. This component is part of the Log Parser that
extracts the selected raw log lines and splits them into a key-value
pair representation by using predefined regular expression patterns.
As outlined in Algorithm 2, Log sources (𝐿𝑠) are included based on
the prefixes that appear in the query.

For each log line (𝐿𝑛 𝑗 ) in a log source, we check whether the log
timestamp (𝐿𝑛𝑂𝑙𝑜𝑔𝑇𝑖𝑚𝑒 ) is within the defined TimeFrame (𝑇 𝑓 ).6
If this condition is satisfied, the𝑚𝑎𝑡𝑐ℎ𝐿𝑜𝑔() function checks the
logline property (𝐿𝑛𝑂𝑙𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ) against the set of queried triples
(𝑄𝑒𝑡𝑟𝑖𝑝𝑙𝑒𝑠𝐾𝑉 ) and filters (𝑄𝑒𝑓 𝑖𝑙𝑡𝑒𝑟𝑠𝐾𝑉 ). If the log line matches the
requirements, the selected log line will be parsed using 𝑝𝑎𝑟𝑠𝑒𝐿𝑖𝑛𝑒 ()
based on predefined regular expression patterns. The resulting
parsed queries will be accumulated and cached in a temporary file
for subsequent processing.

RDF Mapping. This subcomponent of the Log Parser maps and
parses the extracted log data into RDF. It uses the standard RDF

6In this version of the algorithm, we leverage the monotonicity as-
sumption in the log context by stopping the log parsing once the end
of the temporal window of interest is reached in a log file (i.e., we as-
sume that log lines do not appear out of order). This can be adapted, if
required for a specific log source.

Algorithm 2: Log Extraction and RDF Mapping
Input: SPARQL Query (𝑄 ), TimeFrame (𝑇 𝑓 ), LogSources (𝐿𝑠)
Output: Response (𝑅)

1 TimeFrame𝑇 𝑓 = {𝑠𝑡𝑎𝑟𝑡𝑇 , 𝑒𝑛𝑑𝑇 } ;
2 LogSources 𝐿𝑠 = {𝐿𝑠1, ..., 𝐿𝑠𝑛 };
3 LogLines 𝐿𝑛 = {𝐿𝑛1, ..., 𝐿𝑛𝑛 } 𝜖 𝐿𝑠 ;
4 LogSourceOptions 𝐿𝑠𝑂 = {𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦, 𝑟𝑒𝑔𝑒𝑥𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 } 𝜖 𝐿𝑠 ;
5 LogLineOptions 𝐿𝑛𝑂 = {𝑙𝑜𝑔𝑇𝑖𝑚𝑒, 𝑙𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 } 𝜖 𝐿𝑛 ;
6 QueryElements𝑄𝑒 = {𝑝𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠, 𝑡𝑟𝑖𝑝𝑙𝑒𝑠𝐾𝑉 , 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠𝐾𝑉 };
7 𝑄𝑒← 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑄𝑢𝑒𝑟𝑦 (𝑄, 𝐿𝑠𝑂𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 , 𝐿𝑠𝑂𝑟𝑒𝑔𝑒𝑥𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ) ;
8 foreach LogSource 𝐿𝑠𝑖 𝜖 𝐿𝑠 do
9 if 𝑄𝑒𝑝𝑟𝑒𝑓 𝑖𝑥𝑒𝑠 contains 𝐿𝑠𝑂𝑖𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 then
10 foreach LogLines 𝐿𝑛 𝑗 𝜖 𝐿𝑛 do
11 𝑙𝑡 ← 𝐿𝑛𝑂 𝑗𝐿𝑜𝑔𝑇𝑖𝑚𝑒 ;

12 if 𝑙𝑡<𝑇 𝑓𝑒𝑛𝑑𝑇 = 𝐹𝑎𝑙𝑠𝑒 then
13 break;
14 end
15 if 𝑙𝑡>𝑇 𝑓𝑠𝑡𝑎𝑟𝑡𝑇 && 𝑙𝑡<𝑇 𝑓𝑒𝑛𝑑𝑇 then
16 𝑚𝑙 ←

𝑚𝑎𝑡𝑐ℎ𝐿𝑜𝑔 (𝐿𝑛𝑂 𝑗𝑙𝑜𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ,𝑄𝑒𝑡𝑟𝑖𝑝𝑙𝑒𝑠𝐾𝑉 ,𝑄𝑒𝑓 𝑖𝑙𝑡𝑒𝑟𝑠𝐾𝑉 ) ;

17 if𝑚𝑙=True then
18 𝑝𝑎𝑟𝑠𝑒𝑑𝐿𝑖𝑛𝑒← 𝑝𝑎𝑟𝑠𝑒𝐿𝑖𝑛𝑒 (𝐿𝑛 𝑗 ) ;
19 end
20 end
21 𝑝𝑎𝑟𝑠𝑒𝑑𝐷𝑎𝑡𝑎 += 𝑝𝑎𝑟𝑠𝑒𝑑𝐿𝑖𝑛𝑒 ;
22 end
23 𝑅𝐷𝐹𝐷𝑎𝑡𝑎← 𝑅𝐷𝐹𝑀𝑎𝑝𝑝𝑖𝑛𝑔 (𝑝𝑎𝑟𝑠𝑒𝑑𝐷𝑎𝑡𝑎) ;
24 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐷𝑎𝑡𝑎 (𝑅𝐷𝐹𝐷𝑎𝑡𝑎) ;
25 if 𝑟𝑒𝑠𝑢𝑙𝑡=True then
26 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒← ”𝑆𝑢𝑐𝑐𝑒𝑠𝑠”;
27 end
28 end
29 return 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ;
30 end

mapping language to map between the log data and the vocabu-
lary. Different log sources use a common core log vocabulary (e.g.,
SEPSES coreLog7) for common terms (e.g., host, user, message) and
can define extensions for specific terms (e.g., the request term in
ApacheLog). The RDF Mapping also maps terms from a log entry to
specific background knowledge (e.g., hosts in a log-entry are linked
to their host type according to background knowledge). Figure 4
gives an overview of the log graph generation.

RDF Compression. After completion of the mapping phase, the
resulting RDF data is compressed into a compact, binary format

7https://w3id.org/sepses/vocab/log/core/

https://w3id.org/sepses/vocab/log/core/
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Figure 4: Log graph generation overview

of RDF and sent to the Query Processor component that makes it
available for querying.

Query Execution. Once the pre-processing on each target host
has been completed and the compressed RDF data results have
been successfully sent back to the Query Processor, a query engine
executes the given queries against the compressed RDF data. If mul-
tiple hosts were defined in the query, the query engine will perform
query federation over multiple compressed RDF data from those
individual hosts and combine the query results to an integrated
output.

Furthermore, due to semantic query federation, external data
sources are automatically linked in the query results in case they
were referenced in the query (cf. Section 5 for an example that links
IDS messages to the SEPSES-CSKG8).

Visualization. Finally, this component presents the query re-
sults to the user; depending on the SPARQL query form9, e.g.,:
(i) SELECT - returns the variables bound in the query pattern,
(ii) CONSTRUCT - returns an RDF graph specified by a graph tem-
plate, and (iii) ASK - returns a boolean indicating whether a query
pattern matches. The returned result can be either in JSON or RDF
format, and the resulting data can be presented to the user as an
HTML table, chart, graph visualization, or it can be downloaded as
a file.

5 IMPLEMENTATION & APPLICATION
SCENARIOS

In this section, we discuss the implementation of our approach10
and demonstrate its feasibility by means of two application sce-
narios: an intrusion detection scenario that integrates and links

8http://w3id.org/sepses/sparql
9https://www.w3.org/TR/sparql11-query/#QueryForms
10Source code available at https://github.com/sepses

log sources with external security knowledge and a network moni-
toring scenario that demonstrate the use of internal background
knowledge.

5.1 Implementation
We implement a Log Parser11 component as a Java-based tool that
is installed and run on each monitoring host. It supports log parsing
from multiple heterogeneous log files (e.g. authlog, apachelog, IIS-
log, IDSlog) using log extraction patterns defined in Grok Patterns12.
Furthermore, we used CARML13 to map and parse log data into
RDF and leverage the HDT [6] library to efficiently compress the
resulting RDF data into a compact, binary format that allows query
operations without prior decompression.

For the analysis interface, we implemented a Query Processor14

component as a web-application that receives SPARQL queries,
sends them to multiple target hosts, and presents the resulting
graph to the analyst. The query execution is implemented on top
of the Comunica [20] query engine that supports query federation
over multiple linked data interface including HDT files and SPARQL
endpoints.

5.2 Application Scenarios
Scenario I - Intrusion detection and background Linking.

In this scenario, we illustrate the ability of our prototype to support
contextualization and machine interpretation through automated
interlinking between log sources and external background knowl-
edge. This can, e.g., help security analysts to collect vulnerability
information as well as actionable insights on potential mitigations.

We use an existing real-world data set of Snort alerts from MAC-
CDC 201215 and place them on a monitoring host. Since individual
11https://github.com/sepses/VloGParser
12https://github.com/elastic/logstash/blob/v1.4.2/patterns/
grok-patterns
13https://github.com/carml/carml
14https://github.com/sepses/VloGraphQueryProcessor
15https://maccdc.org/2012-agenda/

http://w3id.org/sepses/sparql
https://github.com/sepses
https://github.com/sepses/VloGParser
https://github.com/elastic/logstash/blob/v1.4.2/patterns/grok-patterns
https://github.com/elastic/logstash/blob/v1.4.2/patterns/grok-patterns
https://github.com/carml/carml
https://github.com/sepses/VloGraphQueryProcessor
https://maccdc.org/2012-agenda/
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IDS log-entries are linked to Snort rules16(via Signature-ID), they
can also be connected to vulnerability information (e.g. CVE 17).
Specifically, we link the IDS-snort alerts to the public cybersecurity
knowledge graph (SEPSES-CSKG) which provides continuously up-
dated cybersecurity information including CVE, CWE, CPE, CAPEC,
etc. [11].

In this scenario, we assume that an analyst is interested in vul-
nerabilities and potential mitigations for all CVEs found in the
IDS-snort log results. For this purpose, the analyst formulates a
SPARQL query (Listing 1). Leveraging the link between the ?sid ob-
ject from IDS Snort alerts with the property sr:hasCVEReference
and the value ?cve from the background knowledge, the analyst can
get explicit information about connected CVEs. Furthermore, they
can also integrate other information such as Attack-Impact-Score
from CVSS18 (by using cvss:baseScore) and potential mitigations
from CWE19 (by using cwe:hasPotentialMitigation).

The integrated query results in Table 1 show the original Snort
message, the included CVE number, impact scores, as well as po-
tential mitigations from CWE, including their IDs and descriptions.
Furthermore, Figure 5 shows the terms and their connection in a
graph visualization.

PREFIX cl: <https://w3id.org/sepses/vocab/log/core#>
# other prefixes omitted for the sake of brevity

SELECT ?message ?sid ?cve ?impact ?cwe ?mitigation WHERE {
?s cl:timestamp ?timestamp. ?s cl:message ?message.
?s sa:signatureId ?sid. ?sid sr:hasRuleOption ?ro.
?ro sr:hasCVEReference ?cve. ?cve cve:hasCWE ?cwe.
?cve cve:hasCVSS2BaseMetric ?cbm. ?cbm cvss:baseScore

?impact.↩→

?cwe cwe:hasPotentialMitigation ?cwepot.
?cwepot cwe:mitigationDescription ?mitigation.

} LIMIT 4

Listing 1: Snort alert linking query

Table 1: Snort alert linking query result (excerpt)

message sid cve impact cwe mitigation
WEB-MISC. . . 2056 2004-2320 5.8 200 Don’t allow sensitive data...
WEB-MISC. . . 2056 2010-0360 10 20 Use automated static analy..
WEB-MISC. . . 2056 2010-0360 10 20 Use dynamic tools & tech...
WEB-MISC. . . 2056 2010-0360 10 20 Be especially careful to ...

Scenario II - Network monitoring. In this scenario, we illus-
trate how our prototype provides semantic integration, general-
ization, and entity resolution. We simulated SSH login activities20
across different servers (e.g., DatabaseServer,WebServer, FileServer)
with multiple demo users (e.g., Bob and Alice) and then queried the
authlog files with our federated approach.
16https://www.snort.org/downloads/community/
snort3-community-rules.tar.gz
17https://cve.mitre.org/
18https://www.first.org/cvss/
19https://cwe.mitre.org/
20http://bit.ly/scenario2dataset

Figure 5: Visualization of Snort alert linking query results
(excerpt)

PREFIX cl: <https://w3id.org/sepses/vocab/log/core#>
# other prefixes omitted for the sake of brevity

SELECT ?timestamp ?user ?sourceIp ?targetHostType ?targetIp
WHERE {

?s cl:timestamp ?timestamp. ?s auth:hasUser ?user.
?s auth:hasSourceIp ?sourceIp. ?s auth:hasTargetHost ?th.
?s auth:hasAuthEvent ?ae. ?ae sys:partOfEvent ev:Login.
?th sys:hostType ?targetHostType.
?th cl:IpAddress ?targetIp.}

LIMIT 4

Listing 2: SSH connections query

Typically, atomic information on the log-entry level is not ex-
plicitly linked to semantic concepts, hence, we added extractors
to e.g., detect certain log messages and map them to event types
from our internal background knowledge21 (e.g., event:Login,
event:Logout). Furthermore, we added concept mappings for pro-
gram names, IP addresses, etc. (cf. Section 4).

Now, an analyst can formulate a SPARQL query as shown in
Listing 2 to extract successful login events from SSH connections.
The query results in Table 2 and Figure 6 show successful logins
via SSH over multiple hosts in the specified time range (from Dec
10 13:30:23 to Dec 10 14:53:06). The host type and target IP address
come from internal background knowledge, as the host name is
connected to a specific host type.

This information can be a starting point for security analysts
to explore the rich context of the events in the virtual knowledge
graph.

Table 2: SSH connections query result (excerpt)

timestamp user sourceIp targetHostType targetIp
Dec 10 13:30:23 Bob 172.24.66.19 DatabaseServer 192.168.2.1
Dec 10 13:33:31 Alice 172.24.2.1 WebServer 192.168.2.2
Dec 10 13:38:16 Alice 172.24.2.1 DatabaseServer 192.168.1.3
Dec 10 14:53:06 Bob 172.24.66.19 FileServer 192.168.2.4

6 EVALUATION
We evaluated the scalability of our approach by means of a set of
experiments in non-federated and federated settings.
21https://w3id.org/sepses/knowledge/eventKnowledge.ttl
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https://www.snort.org/downloads/community/snort3-community-rules.tar.gz
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https://cve.mitre.org/
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Figure 6: SSH connections query result visualization (ex-
cerpt)

6.1 Evaluation Setup
The experiments were carried out on Microsoft Azure virtual ma-
chines with seven hosts (4 Windows and 3 Linux) with 2.59 GHz
vCPU and 16 GB RAM each. We reused the log vocabularies from
[5] and mapped them to the log data.

Dataset Overview. We selected the systematically generated
AIT log dataset (V1.1) that simulates six days of user access across
multiple web servers including two attacks on the fifth day [15]. As
summarized in Table 3, the dataset contains several log sources from
four servers (cup, insect, onion, spiral). To reduce reading overhead
and improve log processing performance, we split large log files
from the data set into smaller files – this can easily be replicated in
a running system using log rotation mechanisms. Specifically, we
split the files into chunks of 10k–100k log lines each and annotated
them with original filename and time-range information.

Table 3: Dataset description

LogType #properties mail.cup.com mail.insect.com mail.onion.com mail.spiral.com
size #lines size #lines size #lines size #lines

Audit 36 25 GB 123.6 M 22.7 GB 99.9 M 14.6 GB 68.8 M 12.4 GB 59.5 M
Apache 12 36.9 MB 148 K 44.4 MB 169.3 K 22.7 MB 81.9 K 24 .8 MB 100.4 K
Syslog 6 28.5 MB 158.6 K 26.9 MB 150.7 K 15 MB 86.6 K 15.1 MB 85.5 K
Exim 11 649 KB 7.3 K 567 KB 6.2 K 341 KB 3.9 K 355 KB 4 K
Authlog 11 128 KB 1.2 K 115 KB 1.1 K 102 KB 1 K 127 KB 1.2 K

6.2 Single-host evaluation
We measured the overall time for virtual log graph processing in-
cluding (i) log reading (i.e., searching individual log lines), (ii) log
extraction (i.e., extracting the raw log line into structured data),
(iii) RDF Mapping (i.e., transforming json data into RDF), and
(iv) RDF compression (i.e., compressing RDF into Header, Dictio-
nary, Triples (HDT) format).

In our scenarios, we included several log sources; for each log
source, we formulated a SPARQL query22 to extract 1k, 3k, 5k, and
7k log lines filtering by timestamp in the query option. We report
the average times over five runs for experiments with several log
sources – i.e., Auditlog (AD), Apache for web logs (AP), Exim for
mail transfer agent logs (EX), Syslog for Linux system logs (SY), and
Authlog for authentication logs (AT) – for a single host in Figure 7.
We used the data set from the first web server (i.e., mail.cup.com) in

22https://github.com/sepses/VloGraphQueryProcessor/tree/
hdt-client-version/public/queries
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Figure 7: Average log graph generation time for 𝑛 log lines
with a single host (36 extracted properties)

this evaluation. Note that we only extracted 1000k log lines from
Authlog due to the small original file size (less than 1.2 k log lines).

We found that the performance for log graph extraction differs
across the log sources. Constructing a log graph from Auditlog (AD)
data resulted in the longest processing times followed by Apache,
Exim, Syslog and Authlog. The overall log processing time scales
linearly with the number of extracted log lines. Typically, the log
extraction phase accounts for the largest proportion (> 80%) of
the overall log processing time. Furthermore, we found that the
increase in log processing time with a growing number of extracted
log lines is moderate, which suggests that the approach scales well
to a large number of log lines.

Dynamic Log GraphGeneration. As discussed in the first part
of the evaluation, execution times are mainly a function of the
length of text in the log source and the granularity of the extraction
patterns (i.e., log properties). As can be seen in Table 3, the log
sources are heterogeneous and exhibit different levels of complexity.
In our setup, Auditlog, for instance, has the largest number of log
properties (36), followed by Apache (12), Exim (11), Authlog (11),
and Syslog (6).
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Figure 8: Dynamic log graph generation time23

Figure 8 shows an evaluation of log graph generation perfor-
mance with respect to the complexity of the log source. We use
the Auditlog for this evaluation as it has the highest number of log
properties. Overall, the log graph generation performance grows
linearly with the number of extracted log properties. Hence, queries
that involve a smaller subset of properties (e.g., only user or IP ad-
dress rather than all information that could potentially be extracted)
will typically have smaller generation times.

Graph Compression. Figure 9 shows the performance for log
graph compression on the Auditlog dataset.

We performed full property extraction (i.e., all 36 identified prop-
erties) against 5k, 10k, 15k, and 20k log-lines, respectively, and
23Experiments carried out on AuditLog data on a single host.
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compare the original size of raw log data, the generated RDF graph
in TURTLE24 format (.ttl), and the compressed graph output in
HDT format.

For 5k log lines (1 MB raw log) compression results in approx-
imately 0.4 MB compared to 5.4 MB for the uncompressed RDF
graph. 20k log lines (4 MB raw log) compresses to about 1.87 MB
from 21.4MB uncompressed generated RDF graph. Overall, the com-
pressed version is typically less than half the size of the original raw
log and 10x smaller than the generated RDF graph. The resulting
graph output would be even smaller for fewer extracted properties,
minimizing resource requirements (i.e. storage/disk space).
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Figure 9: Graph compression

6.3 Multi-host evaluation
To evaluate the scalability of our approach, we measure the log
processing time for multiple hosts on the same network. This eval-
uation includes not only the log processing but also the query
federation performance. Federation means that the queries are not
only executed concurrently, but that they involve evaluating and
combining individual query results to achieve integrated results.

Table 4 summarizes the evaluation setup that consists of six ex-
periments ranging from 30 minutes up to 5 hours. The timeframe
describes the starting time and the end time of analysis; log lines
per host summarizes the range of log lines per host within the time-
frame. For this evaluation, we used the Apache log dataset described
in Table 3 and conducted the analysis within the log timeframe of
March 2nd, 2020, starting from 8pm. Host 1 to host 4 store the data
from the original 4 servers in the dataset (host 1 mail.cup.com, host
2 mail.insect.com, and so on); for the 3 additional hosts in the evalu-
ation, we replicated the log files from mail.cup.com, mail.insect.com,
and mail.spiral.com. Similar to the single-host evaluation, for each
experiment, we reported the average times over five runs.

Table 4: Multihost Experiment Timeframe
Experiment Duration Log lines per host Experiment Duration Log lines per host
E1 30min 0.7k - 1k E4 3h 3k - 5k
E2 1h 1k - 1.7k E5 4h 6k - 8k
E3 2h 2.8k - 4k E6 5h 8k - 10k

Figure 10 shows the average log processing times for each exper-
iment. The 1 hour experiment shows that log processing for two
hosts takes approx. 4.7 seconds on average. In the same experiment,
the time slightly increases with an increasing number of hosts and
reaches a max. of 7.5 seconds. The log processing time for the 5
24https://www.w3.org/TR/turtle/
25Evaluation of linking to background knowledge stored on external
servers is out of scope.
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Figure 10: Query execution time in a federated setting for
different time frames25

hours experiment with two hosts takes approx. 19.01 seconds on
average and reaches the max. average time of 26.10 seconds with 7
hosts. Based on these results, we conclude that the growth of the
log processing time as a function of the number of hosts is moder-
ate. Therefore, this approach scales well with a growing number of
hosts to monitor, as the log processing on each host is parallelized
and the query federation overhead is low.

7 CONCLUSIONS
In this paper, we presented a novel approach for distributed ad-hoc
log analysis. Our approach extends the Virtual Knowledge Graph
(VKG) concept – originally proposed in the context of relational
data – and provides integrated access to (partly) unstructured log
data. In particular, we proposed a federated method to dynamically
extract, semantically lift and link named entities directly from raw
log files. In contrast to traditional approaches, this method only
transforms the information that is relevant for a given query, instead
of processing all log data centrally in advance. Thereby, it avoids
scalability issues associated with the central processing of large
amounts of rarely accessed log data.

To explore the feasibility of this approach, we developed a proto-
type and demonstrated its application in two common log analysis
tasks in security analytics. Furthermore, we conducted a perfor-
mance evaluation which indicates that the total log processing time
is primarily a function of the number of extracted (relevant) log
lines and queried hosts, rather than the size of the raw log files. Our
prototypical implementation of the approach provides scalability
when facing larger log files and an increasing number of monitoring
hosts.

Although this distributed ad-hoc querying has multiple advan-
tages, we also identified a number of limitations. First, log files are
parsed on demand and not indexed; hence, query parameters should
restrict the extracted log lines to keep the processing time manage-
able (e.g., currently based on time frames). Second, the knowledge-
based ad-hoc analysis approach presented in this paper is intended
to complement, but does not replace traditional log processing
techniques. A typical motivation for shipping logs to dedicated
central servers, for instance, is to reduce the risk of undetected log
tampering in case hosts in the network have been compromised.
File integrity features could help to spot manipulations of log files,
but particularly for auditing purposes, the proposed approach is
not meant to replace secure log retention policies and mechanisms.
Finally, while out of scope for the proof of concept implementation,
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the deployment of the concept in real environments requires tra-
ditional software security measures such as vulnerability testing,
authentication, secure communication channels, etc.

In future work, we plan to improve the query analysis, e.g., to
automatically select relevant target hosts based on the query and
asset background knowledge. Furthermore, we will explore the
ability to incrementally build larger knowledge graphs based on a
series of consecutive queries in a step-by-step process. Finally, an
interesting direction for research that would significantly extend the
scope of potential use cases is a streaming mode that could execute
continuous queries, e.g., for monitoring and alerting purposes. We
plan to investigate this aspect and integrate and evaluate stream
processing engines in this context.
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