
Virtual Knowledge Graphs for Federated Log Analysis
Kabul Kurniawan∗

kabul.kurniawan@wu.ac.at
Vienna University of Economics and

Business
Vienna, Austria

Andreas Ekelhart
aekelhart@sba-research.org

SBA Research
Vienna, Austria

Elmar Kiesling
elmar.kiesling@wu.ac.at

Vienna University of Economics and
Business

Vienna, Austria

Dietmar Winkler
dietmar.winkler@tuwien.ac.at

Vienna University of Technology
Vienna, Austria

Gerald Quirchmayr
gerald.quirchmayr@univie.ac.at

University of Vienna
Vienna, Austria

A Min Tjoa
amin@ifs.tuwien.ac.at

Vienna University of Technology
Vienna, Austria

ABSTRACT
Security professionals rely extensively on log data to monitor IT
infrastructures and investigate potentially malicious activities. Ex-
isting systems support these tasks by collecting log messages in
a database, from where log events can be queried and correlated.
Such centralized approaches are typically based on a relational
model and store log messages as plain text, which offers limited
flexibility for the representation of heterogeneous log events and
the connections between them. A knowledge graph representation
can overcome such limitations and enable graph pattern-based log
analysis, leveraging semantic relationships between objects that
appear in heterogeneous log streams. In this paper, we present a
method to dynamically construct such log knowledge graphs at
query time, i.e., without a priori parsing, aggregation, processing,
and materialization of log data. Specifically, we propose a method
that – for a given query formulated in SPARQL – dynamically con-
structs a virtual log knowledge graph directly from heterogeneous
raw log files across multiple hosts and contextualizes the result
with internal and external background knowledge. We evaluate the
approach across multiple heterogeneous log sources and machines
and see encouraging results that indicate that the approach is viable
and facilitates ad-hoc graph-analytic queries in federated settings.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and mal-
ware mitigation; Vulnerability management; • Information sys-
tems → Query reformulation; Information extraction; Graph-based
database models.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from per-
missions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3465767

KEYWORDS
Semantic Log Analysis, Virtual Log Graphs, Dynamic Log Extrac-
tion, Decentralized Log Querying, Forensics

ACM Reference Format:
Kabul Kurniawan, Andreas Ekelhart, Elmar Kiesling, Dietmar Winkler,
Gerald Quirchmayr, and A Min Tjoa. 2021. Virtual Knowledge Graphs for
Federated Log Analysis. In The 16th International Conference on Availability,
Reliability and Security (ARES 2021), August 17–20, 2021, Vienna, Austria.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3465481.3465767

1 INTRODUCTION
Log data analysis is a crucial task in cybersecurity, e.g., when moni-
toring and auditing systems, collecting threat intelligence, conduct-
ing forensic investigations of incidents, and pro-actively hunting
threats [4]. Currently available log analysis solutions, such as Secu-
rity Information and Event Management (SIEM) systems, support the
process by aggregating log data as well as storing and indexing log
messages in a central relational database [12]. Such databases, how-
ever, have limitations with respect to the ability to express relations
between entities [16]. Without explicit links between log entries in
various log sources, it is difficult to integrate the partial and isolated
views on system states and activities reflected in the various logs
and to contextualize, link, and query log data. In large-scale infras-
tructures, the central collection model is also bandwidth-intensive
and computationally demanding [7, 8, 12].

In this paper, we propose a decentralized approach for log anal-
ysis that is flexible, knowledge-based, and scalable. Specifically,
we introduce a method to execute federated, graph pattern-based
queries on dispersed, heterogeneous raw log data by dynamically
constructing virtual knowledge graphs [21, 22]. To this end, we
introduce a method that (i) federates graph-pattern based queries
across endpoints, (ii) extracts only potentially relevant log mes-
sages, (iii) integrates the dispersed log events into a common graph,
and (iv) links them to background knowledge. All of these steps
are executed at query time without any up-front ingestion and
conversion of log messages.

A key advantage of the graph-based model is that it provides a
concise, flexible, and intuitive abstraction for the representation
of various relations – e.g., connections in networked systems, hi-
erarchies of processes on endpoints, associations between users
and services, and chains of indicators of compromise. These con-
nections automatically link log messages that are related through

https://doi.org/10.1145/3465481.3465767
https://doi.org/10.1145/3465481.3465767

ARES 2021, August 17–20, 2021, Vienna, Austria K. Kurniawan, et al.

Figure 1: Concept overview

common entities (such as users, hosts, and IP addresses); they are
crucial in cybersecurity investigations, as threat agent activities
typically leave digital traces in various log files that are often spread
across multiple endpoints in a network, particularly in discovery,
lateral movement, and exfiltration stages of an attack [1].

In contrast to a traditional workflow that stores log messages in a
centralized repository, the proposed approach shifts the log parsing
workload from ingest to analysis time. This enables the use of the
most granular, original raw log data without loss of information
that would occur when pre-filtering and aggregating the logs before
transferring them to a central archive, thus complementing existing
log analysis approaches. Figure 1 illustrates the proposed approach
for ad-hoc knowledge graph construction; the virtual log knowledge
graph at the center of the figure is dynamically constructed from
dispersed log sources based on analysts’ queries and linked to
external and internal knowledge sources.

To sum up, our contributions in this paper are as follows: We
tackle current challenges in security log analysis (discussed in Sec-
tion 3) by means of a Virtual Knowledge Graph (VKG) framework
for federated log analysis that facilitates (i) ad-hoc integration and
semantic analyses on raw log data without prior centralized ma-
terialization, (ii) the collection of evidence-based knowledge from
heterogeneous log sources, (iii) automated linking of fragmented
knowledge about system states and activities, and (iv) automated
linking to external security knowledge (such as, e.g., attack patterns,
threat implications, actionable advice).

The remainder of this paper is structured as follows: Section 2
provides an overview of related work; in Section 3, we discuss
challenges in log analysis and derive requirements for our approach;
Section 4 introduces the proposed architecture and components
for virtual log knowledge graph construction; Section 5 describes
our prototypical implementation and illustrates its use through
example queries. Finally, we evaluate our approach in Section 6 and
conclude with an outlook on future work in Section 7.

2 RELATEDWORK
In this section, we discuss closely related work on the subjects of
log management and analytics that we selected from the following
categories that are particularly relevant in the context of our work1:

Centralized Security Log Analysis. A variety of conceptual
approaches for centralized security log processing and correlation
have been proposed in the literature. For forensic purposes, [2] pro-
poses topological data analysis (TDA) to improve firewall forensics

1Due to space restrictions, we can only make illustrative references.

at the enterprise level. This approach employs statistical, graph-
based, and visual methods for anomaly detection and interpretation.
Like other similar approaches, it does not aim to integrate multiple
log sources and to find links between them, but focuses on a single,
highly structured, log source (i.e., firewall logs).

To learn and detect attack patterns from multiple log sources
(i.e., firewall and web access log), [19] aggregates log sources into a
centralized database before processing it in a rule correlation en-
gine. Compared to our approach, the scope of existing approaches is
typically limited and does not include linking to background knowl-
edge. Contributions such as [17] propose log analysis approaches
specific to cloud environments. In the latter, log events are identi-
fied and summarized before they are persisted into a centralized
NoSQL database, where a Complex Event Processing (CEP) engine
performs correlation and condensation. This approach specifically
focuses on Syslog messages.

Somewhat closer to the approach in the present paper, [12] pro-
pose a hybrid relational-ontological architecture to overcome re-
striction in SIEMs (e.g., cross-domain, schema-complexity, scalabil-
ity). The approach combines existing relational SIEM data reposi-
tories with external vulnerability information, i.e., Common Vul-
nerabilities and Exposures (CVE). The evaluation shows that the
ontological approach can reduce the computation load compared
to using a relational schema only.

Decentralized Security log analysis. Decentralized event cor-
relation for intrusion detection was introduced in early work such
as [13], where the authors propose a specification language to de-
scribe intrusions in a distributed pattern and use a peer-to-peer
system to detect attacks. In this decentralized approach, the focus
is on individual Intrusion Detection System (IDS) events only. To
address scalability limitations of centralized log processing, [7]
distributes correlation workloads across networks to the event-
producing hosts. Similar to this approach, we aim to tackle chal-
lenges of centralized log analysis. However, we leverage semantic
web technologies to also provide contextualization and linking to
external background knowledge. In the cloud environment, [23]
proposes a distributed and parallel security log analysis framework
that provides analyses of a massive number of systems, networks,
and transaction logs in a scalable manner. It utilizes the two-level
master-slave model to distribute, execute, and harvest tasks for log
analysis. The framework is specific to cloud-based infrastructures
and lacks the graph-oriented data model and contextualization and
querying capabilities of our approach.

Semantic Log Data Virtualization. As an example for seman-
tic approaches, [10] leverages an ontology to correlate alerts from
multiple IDSs with the goal to reduce the number of false-positive
and false-negative alerts. It relies on a shared vocabulary to facili-
tate security information exchange (e.g., IDMEF, STIX, TAXII), but
does not facilitate linking to other log sources that may contain
indicators of attacks (e.g., authentication, file access, etc.).

To create a foundation for semantic SIEMs, [18] introduces a
Security Strategy Meta-Model (SSMM) to enable interrelating in-
formation from different domains and abstraction levels in SIEMs.
To facilitate log integration, contextualization and linking to back-
ground knowledge, [5] proposes a modular log vocabulary that en-
ables log harmonization and integration between heterogeneous log

Virtual Knowledge Graphs for Federated Log Analysis ARES 2021, August 17�20, 2021, Vienna, Austria

sources. A recent approach proposed in [14] introduces a vocabu-
lary and architecture to collect, extract, and correlate heterogeneous
low-level �le access events from Linux and Windows event logs.
Using SPARQL queries, the extracted events can be constructed
and linked to background knowledge. Compared to the approach
in this paper, the approaches discussed so far rely on a centralized
repository. A methodologically similar approach for log analysis
outside of the security domain has also been introduced in [3],
which leverages ontology-based data access to support log extrac-
tion and data preparation on legacy information systems for process
mining. They focus on log data from legacy systems in existing
relational schemas and on ontology-based query translation.

3 REQUIREMENTS
Existing log management systems typically ingest log sources from
multiple log-producing endpoints and store them in a central repos-
itory for further processing. They then index and parse these logs
collected from various sources before they can be analyzed. There-
fore, such log management systems typically require considerable
amounts of disk space to store the data as well as computational
power for log analysis, which limits their scalability (due to concen-
trated network bandwidth, CPU, memory, and disk space require-
ments).

Decentralized log analysis, by contrast, (partly) shifts the compu-
tational workloads involved in log pre-processing (e.g., acquisition,
extraction, and parsing) and analysis to the log-producing hosts [7].
This model has the potential for higher scalability and applicability
in large-scale settings where the scope of the infrastructure pro-
hibits e�ective centralization of all potentially relevant log sources
in a single repository.

Existing approaches for decentralized log processing, however,
primarily aim to provide correlation and alerting capabilities, rather
than the ability to query dispersed log data in a decentralized man-
ner. Furthermore, they lack e�ective means for semantic integration,
contextualization, and linking, i.e., dynamically creating connec-
tions between entities and potentially involving externally available
security information. They also typically have to ingest all log data
continuously on the local endpoints, which may consume a lot of
resources across the infrastructure.

In this paper, we tackle these challenges and propose a distributed
approach for security log integration and analysis. Thereby, we
facilitate ad hoc querying of dispersed raw log sources without prior
central ingest and aggregation in order to address the following
requirements (R):

� R.1 - Resource-e�ciency avoid unnecessary log process-
ing (acquisition, extraction, and parsing) and minimize re-
source requirements in terms of centralized storage space
and network bandwidth.

� R.2 - Aggregation and integration over multiple end-
points ability to execute federated queries across multiple
monitoring endpoints concurrently and deliver integrated
results.

� R.3 - Integration, Contextualization & Background-Linking
ability to contextualize disparate log information, integrate
it, and link it to background knowledge and external security
information.

� R.4 - Standards-based query language use of an expres-
sive, standard based-query language for log analysis.

4 VIRTUAL LOG GRAPH ARCHITECTURE
Using the requirements set out in Section 3, we propose an ap-
proach and architecture for security log analytics based on the
concept of VKGs. The proposed approach leverages Semantic Web
Technologies that provide(i) a standardized graph-based data rep-
resentation to describe data and their relationships �exibly using
the Resource Description Framework (RDF)2, (ii) semantic linking
and alignment to integrate multiple heterogeneous log data and
other resources (e.g., internal/external background knowledge), and
(iii) a standardized semantic query language (i.e. SPARQL3) to re-
trieve and manipulate RDF data. SPARQL has a wide expressivity
to perform complex querying (e.g., aggregation, subqueries, and
negation).

To addressR.1, our approach does not rely on centralized log
processing, i.e., we only extract relevant log events based on the
temporal scope and structure of a given query and its query parame-
ters. Speci�cally, we only extract lines in a log �le that(i) are within
the temporal scope of the query, and(ii) may contain relevant in-
formation based on the speci�ed query parameters and �lters. The
identi�ed log lines are extracted, parsed, lifted to RDF, compressed,
and temporally stored in a local cache on the respective endpoint.
This approach implements the concept of data virtualization and
facilitates on-demand log processing. By shifting computational
load to individual monitoring agents and only extracting log entries
that are relevant for a given query, this approach can signi�cantly
reduce unnecessary log data processing. Furthermore, due to the
use of RDF-�le compression technique, the transferred RDF data
is rather small and does not require vast volumes of centralized
storage. We discuss this further in Section 6.

Semantic web technologies also provide a mechanism for dis-
tributed querying through query federation4. We leverage this
ability to query multiple log sources across distributed endpoints
and to combine the results in a single integrated output, addressing
R.2.

To addressR.3, we interlink and contextualize our extracted log
data using internal/external background knowledge (e.g., IT asset
information and cybersecurity knowledge) via semantic linking
and alignment.

Finally, we use SPARQL to formulate queries and perform log
analysis against the processed log data, which addressesR.4. We
show the application scenarios for SPARQL query federation and
contextualization in Section 5.

Figure 2 illustrates the resulting virtual log graph and query fed-
eration architecture for log analysis; it comprises two main com-
ponents:(i) a Query Processor, which provides an interface to
formulate SPARQL queries and distributes the queries among in-
dividual endpoints to retrieve, integrate, and present the resulting
data sets (log graph) from each endpoint, and(ii) a Log Parseron
each host, which receives and translates queries, extracts raw log

2https://www.w3.org/RDF/
3https://www.w3.org/TR/rdf-sparql-query/
4https://www.w3.org/TR/sparql11-service-description/

ARES 2021, August 17�20, 2021, Vienna, Austria K. Kurniawan, et al.

Figure 2: Virtual log graph and query federation architecture

data from hosts, parses the extracted log data into an RDF repre-
sentation, compresses the resulting RDF data into a binary format,
and sends the results back to theQuery Processor. In the following,
we explain the individual components in detail.

SPARQL Query Editor. This subcomponent is part of theQuery
Processorthat allows users to formulate and execute SPARQL queries
against hosts. The query editor allows analysts to de�ne settings
for query execution, including:(i) Target Hosts: a collection of end-
points which should be considered in the log analysis,(ii) Knowledge
bases: a collection of internal and/or external sources of background
knowledge that should be included in the query execution (e.g. IT
infrastructure, CTI knowledge base, etc.),(iii) Time Interval: the
time range of interest for the log analysis (i.e., start time and end
time).

Query Parsing. Since the SPARQL query speci�cation [9] pro-
vides a number of alternative syntaxes to formulate queries, we
parse the raw SPARQL syntax into a structured format for eas-
ier access to the properties and variables inside the query, prior
to transferring the query to the monitoring hosts. The prepared
SPARQL query is then sent as a parameter to theQuery Translator
via theWeb APIin the Log ParserComponent.

Query Translation . This subcomponent decomposes the SPARQL
query to identify relevant properties for log source selection and log
line matching. Algorithm 1 outlines the general query translation
procedure, which identi�es relevant log sources and log lines based
on three criteria, i.e.,(i) pre�xes used in the query,(ii) triples, and
(iii) �lters.

%A45 8G4B¹%º is a set of log vocabulary pre�xes that appear in
a given query&. In each query, the contained pre�xes will be
used by the query translator to identify relevant log sources. Avail-
able pre�xes can be con�gured to the respected log sources in
the Log Parsercon�guration on each client, including, e.g., the
path to the local log �le location. As an example,PREFIX auth:
<http://w3id.org/authLog> is the pre�x for �DC�!>6 ; it's pres-
ence in a query indicates that the�DC�!>6 on the selected hosts
will be included in the log processing.

)A8?;4B¹) º is a set of triples that appear in a query, each repre-
sented asTriple Patternor aBasic Graph Pattern (BGP)(i.e.<Subject>

Algorithm 1: Query translation
Input: SPARQL Query (&), Vocabulary (+), regexPatterns ('%)
Output: QueryElements (&4)

1 Pre�xes%= {%1,...,%= } n & ;
2 Triples) = {(D1 942C, %A43820C4,$1 942C} n & ;
3 Filters� = {+0A801;4,+0;D4} n &;
4 Function translateQuery(& ,+ ,'%) :
5 % 64C%A45 8G(&);
6) 64C)A8?;4%0CC4A=(&);
7 foreach Triple) 8 n) do
8 if C~?4() 8$1 942C)=Literal then

9 ;>6%A>?4AC~ 64C!>6%A>?4AC~() 8%A43820C4,+ ,'%);

10 :4~+0;D4 f ;>6%A>?4AC~•)8$1 942Cg;

11 end
12 CA8?;4B ++= :4~+0;D4;
13 end
14 � 64C�8;C4A(C0C4<4=C(&);
15 foreach Filter � 8 n � do
16 if C~?4(� 8+ 0;D4)=Literal then
17 ?A43820C4 64C%A43820C4(& ,� 8+ 0A801;4);

18 ;>6%A>?4AC~ 64C!>6%A>?4AC~(?A43820C4,+ ,'%);
19 :4~+0;D4 f ;>6%A>?4AC~• �8+ 0;D4 g;

20 end
21 5 8;C4AB ++= :4~+0;D4;
22 end
23 &4 {%,CA8?;4B +,5 8;C4AB +};
24 return &4;
25 End Function

<Predicate> <Object>). We match these triples to log lines (e.g.,
hosts and users) as follows: Function64C)A8?;4%0CC4A=¹&º collects
the triple patterns) contained within the query&. For each triple
statement in a query, we identify the type ofObject) 8$1 942C. If the
type is!8C4A0;, we identify the) 8%A43820C4as well. For example, for
the triple {?Subject cl:originatesFrom "Host1"} , the func-
tion 64C!>6%A>?4AC~¹º identi�es) 8$1 942C "Host1", and additionally,
looks up the property range provided inA464G%0CC4A=B¹'%º.

A464G%0CC4A=B¹'%º5 is the background knowledge that links
property terms in a vocabulary to the terms in a log entry and
the respected regular expression pattern. For example, the prop-
erty 2; : >A868=0C4B�A><is linked to the concept"hostname" in
A464G%0CC4A=¹'%º, which has a connected regex pattern for the

5https://github.com/sepses/VloGParser/blob/hdt-version/experiment/
pattern/regexPattern.ttl

	Abstract
	1 Introduction
	2 Related Work
	3 Requirements
	4 Virtual Log Graph Architecture
	5 Implementation & Application Scenarios
	5.1 Implementation
	5.2 Application Scenarios

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Single-host evaluation
	6.3 Multi-host evaluation

	7 Conclusions
	References

