
Distributed Key Generation
with Ethereum Smart Contracts

Philipp Schindler1 �, Aljosha Judmayer1,
Nicholas Stifter1,2, and Edgar Weippl1,2

1 SBA Research, Austria
{pschindler,ajudmayer,nstifter,eweippl}@sba-research.org

2 Vienna University of Technology, Austria

Abstract. Distributed key generation (DKG) is a fundamental build-
ing block for a variety of cryptographic schemes and protocols, such as
threshold cryptography [9], multi-party coin tossing schemes [1], pub-
lic randomness beacons [20] or (BFT) consensus protocols [6,19]. More
recently, the surge in interest for blockchain technologies, and in partic-
ular the quest for developing scalable protocol designs, has renewed and
strengthened the need for efficient and practical DKG schemes. Surpris-
ingly, the availability of DKG protocol implementations and analyses of
their practicability is still highly limited, given their broad range of ap-
plications. We hereby help close this gap by presenting a fully functional,
well documented, economically viable DKG implementation3 for deriving
keys to use with BLS threshold signatures as an Ethereum smart con-
tract. Given the current Ethereum block gas limit (∼ 8M), it is possible
to support up to n = 256 nodes while ensuring that any necessary con-
tract call can still be executed within a single block. The practicability
of our implementation is further demonstrated through the deployment
and successful execution of our DKG contract in the Ropsten testnet.

1 Introduction

The goal of a DKG scheme is to agree on a secret that is shared among a set of n
participants such that only a subset of t < n nodes can use or reveal the secret.
Secret sharing schemes, e.g. Shamir Secret Sharing [24], or (publicly) verifiable
variants, assume a (trusted) dealer that wants to share a secret it knows. In
contrast, in a DKG protocol no single party has knowledge of the secret that is
being shared [14].

Interestingly enough, while the topic of DKG has already been extensively
discussed in the literature, for example, by the works of Genanaro et al. [12] or,
more recently, Kate and Goldberg [15], practical open source implementations of
DKG protocols are still rare. We aim to close this gap by providing a lightweight
implementation of a DKG protocol based on modern pairing based threshold

3 The source code, documentation, and logs of a successful execution in the Ropsten
testnet are available at https://github.com/PhilippSchindler/ethdkg/.

https://github.com/PhilippSchindler/ethdkg/

2 P. Schindler et al.

cryptography. Our implementation consists of (i) a client application executed
by each party participating in the DKG protocol, and (ii) an Ethereum smart
contract which ensures that adversarial behavior of any minority of clients cannot
prevent the protocol from producing the desired protocol output.

2 Use Cases

The ability to avoid or reduce the necessity to trust in any single third party
in a DKG is an appealing characteristic, in particular in the context of per-
missionless cryptocurrencies and blockchain technologies. Recent improvement
proposals for blockchain and other distributed ledger protocols, e.g. randomized
BFT consensus protocols such as Honeybadger [17], the Dfinity blockchain pro-
tocol [13] or Calypso [16], are increasingly relying on threshold cryptography
as part of the presented scheme. In this scenarios, one typically does not want
to trust a single centralized entity for the required protocol setup, but instead
use DKG protocols as an alternative without trusted authorities. Our DKG pro-
tocol is particularly suitable for such scenarios as it can be executed on the
readily available Ethereum platform, provides flexible means for registration of
the participants, and tolerates faulty or adversarial behavior of any minority of
participants.

Our smart contract based DKG protocol can also be used to bootstrap a
variety of interesting applications on the Ethereum platform itself. A candidate
example is a decentralized source of publicly-verifiable, bias-resistant and un-
predictable randomness, or short, a randomness beacon [20]. By levering the
security and uniqueness properties of BLS threshold signatures, the construc-
tion of a randomness beacon follows naturally. Within the Ethereum platform,
such trustworthy randomness beacons are particularly useful, as there are cur-
rently no built-in mechanisms for deriving randomness with the aforementioned
characteristics. Consequently, Ethereum smart contracts largely rely on less se-
cure sources of randomness (such as the block hash) or even depend on trusted
third parties. Beyond an application in Ethereum smart contracts, unpredictable
bias-resistant public randomness also plays an important role in a broad range of
fields, including proof-of-stake and sharding protocols, privacy preserving mes-
saging services, e-voting protocols, as well as gambling and lottery services [23].

Another Ethereum related use case for our DKG includes wallet contracts
where multiple signatures are required to initiate some action, such as performing
transactions, which can be verified with a constant amount of computation in
the contract.

Our DKG can also be used to setup the public key in a threshold public
key encryption scheme [8]. In such a scenario, a client could encrypt a message
under the generated master public key such that the decryption of the mes-
sage requires the collaboration of a threshold of participants from the DKG.
Combined with smart contracts, one can construct an incentive-based timelock
encryption protocol [22].

Distributed Key Generation with Ethereum Smart Contracts 3

3 Related Work

To the best of our knowledge, the DKG protocol [18] developed by the Orbs Net-
work team is the only publicly available protocol targeting a similar deployment
scenario, namely, an implementation of a DKG protocol using the Ethereum
platform. However, the presented prototypical implementation appears to be in-
complete and has not been updated in over 4 months. For example, countermea-
sures to protect against key cancellation attacks [2] are not (yet) implemented,
although documentation in the contract source code (dkg.sol) suggests that
the team is aware of the issue. In the herein presented DKG protocol we provide
a mechanism to protect against these kinds of attacks using a non-interactive
zero-knowledge proof, which can be efficiently verified by the smart contract.
Additionally, our protocol can tolerate up to f = dn2 e−1 Byzantine participants
while still completing successfully. In contrast, the Orbs Network implemen-
tation requires a protocol restart even if just a single adversarial participant
sends an invalid share. Furthermore, we not only provide an implementation of
the smart contract itself, but also make the the implementation of the client
software that handles the necessary interactions with the Ethereum blockchain
publicly available.

4 High Level Protocol Description

Our DKG protocol is tailored towards a practical implementation to be used with
the Ethereum blockchain and was not yet presented in a standalone setting. The
protocol is inspired by the original presentation of secret sharing by Shamir [24]
and the aggregation properties of the BLS signature scheme [2,3,4]. Our protocol
operates in four consecutive phases and the smart contract ensures that the
functions can only be executed during the correct phases. Further, the smart
contract and client software upholds sufficient waiting times between phases,
to ensure that agreement on a common-prefix [11] of the Ethereum blockchain
is reached (with high probability) before taking state dependent actions. The
protocol phases are:

1. Registration: Each participant submits a transaction to the smart con-
tract that contains an individual public key.

2. Key Sharing: All Participants perform secret sharing of their private keys
with the nodes successfully registered in the previous step.

3. Dispute: Participants may complain about invalid shares received.
4. Finalization: The master public key is constructed, uploaded and verified.

In the following, we discuss each of the protocol phases in more detail.

4.1 Registration

During the registration phase, each participant prepares a BLS keypair and sends
the public key together with a non-interactive zero-knowledge (NIZK) proof of
knowledge [7] of the secret key to the smart contract. This proof is required to
protect against rogue key attacks [2], where an adversary crafts a public key in

4 P. Schindler et al.

a way that, upon aggregation, cancels out the keys from other participants. Fur-
thermore we use this proof to tie the participant’s externally owned Ethereum
account to the BLS public key submitted, to prevent an adversary from reg-
istering themselves with a public key copied from an honest participant. The
contract verifies the proof, stores the public key received, assigns the registrant
an incrementing id 1, 2, ..., n and triggers a Registration event to notify all par-
ticipants.

4.2 Key Sharing

Each of the n registered participants uses Shamir’s Secret Sharing [24] to share
its BLS secret key among all previously registered nodes. We set the secret shar-
ing threshold t =

⌊
n
2

⌋
+ 1. The shares are encrypted using a shared key, derived

from the issuer’s secret key and the receiver’s registered public key, similar to
the Diffie-Hellman key exchange protocol [10]. This construction ensures an that
all shared keys (between two correct clients) are different without requiring to
verifiably distribute O(n2) keys. In section 4.3, we show how to use this property
to deal with disputes without having to abort the protocol under adversarial be-
havior. To allow for share verification, each participant further needs to commit
to the coefficients of the secret sharing polynomial. The encrypted shares and
commitment are sent as a transaction to the smart contract, which triggers a
KeySharing event upon successful processing in the smart contract. Upon receiv-
ing a transaction with encrypted shares, the smart contract verifies that (i) a
participant is eligible to upload (i.e. that the contract is in the key sharing phase
and the participants has previously registered) and (ii) has provided the correct
number of shares (n − 1) and commitments (t). However the contract does not
(and cannot) decrypt the provided shares and check their validity. This verifi-
cation is performed by the client software, which is actively monitoring the p2p
network for newly mined blocks and is listening for KeySharing events. When
such an event is fired, the client first decrypts their respective share and then
verifies the decrypted share against the commitment to ensure its correctness.

4.3 Dispute

If a participant discovers that one (or more) of its received shares are invalid, it
files a dispute for each of the individual shares. For this purpose, the decryption
key (i.e. the shared key between the malicious share issuer and itself) is sent as
part of the dispute transaction to the smart contract. The smart contract can
then attempt to decrypt the share and check for its correctness. However, the
contract additionally needs to verify that the provided decryption key is indeed
correct. Otherwise an adversary could easily claim that shares it received are
invalid by providing an invalid decryption key. To allow for this verification, in
addition to the decryption key, a participant has to provide a NIZK proof [7]
showing that the decryption key is indeed valid. Notice that sending a dispute
transaction renders the corresponding decryption key public knowledge. How-
ever, as we ensure that all decryption keys (between correct nodes) are different,
the adversary cannot learn any additional information by forcing a correct node
to submit a dispute.

Distributed Key Generation with Ethereum Smart Contracts 5

4.4 Finalization

During the finalization phase each participant first determines the set of partic-
ipants that successfully shared their secret key. A participant is only part of this
set if it registered and shared its key successfully and there were no successful
disputes filed against the participant. After this set is established, each partici-
pant can compute its (individual) group secret key by computing the sum of the
received shares. Furthermore the master public key can be computed by adding
all public keys. As soon as any of the participants uploads this master public
key, and the smart contract verifies its correctness, threshold signatures under
this public key can be verified by the smart contract.

5 Evaluation

To show the viability of our protocol we deployed our DKG contract in
the Ethereum test network Ropsten and simulated a simple scenario with
5 participants running the client software. Clients A, B and C follow the
prescribed protocol, while client D aborts after the registration phase and
client E actively tries to manipulate the protocol run by providing an in-
valid share. The contract can be found using an Ethereum block explorer
such as https://ropsten.etherscan.io/ by supplying the contract address
0x64eB9cbc8AAc7723A7A94b178b7Ac4c18D7E6269. This exemplary protocol ex-
ecution is further documented in the Github repository https://github.com/

PhilippSchindler/ethdkg/evaluation/.
To highlight the scalability of our approach, we provide gas usage measure-

ments for all types of transactions a client (potentially) needs to execute during
a protocol run. We tested our implementation with up to 256 nodes and ob-
serve that the consumed gas for all transactions is well below the current block
gas limit of ∼ 8M . Deployment of a contract instance consumed ∼ 3.5M gas.
The most expensive operation, i.e. filing a dispute, only has to be executed if an
adversary actively tries to manipulate the protocol run. As in this case the adver-
sarial behavior can be cryptographically proven to the smart contract, a security
deposit could be used to refund the costs for a rightful dispute claim. Using the
suggested gas price estimate of 2.5 Gwei from https://ethgasstation.info/,
the cost of submitting a dispute in a scenario with 256 nodes is only ∼ 0.018
ETH (∼ $1.50).

6 Challenges

One of the major challenges faced is the implementation of the required cryp-
tographic primitives within the constraints imposed by the Ethereum platform.
While elliptic curve operations such as additions, multiplications and pairings
are efficiently computable on modern hardware, one needs to use a very lim-
ited set of instructions (i.e. precompiled contracts [21,5]) to efficiently perform
these calculations within the Ethereum EVM. In principle, one could imple-
ment any required operation using the available EVM opcodes. In practice, this
however leads to very high gas consumption for more involved computations.

https://ropsten.etherscan.io/
https://ropsten.etherscan.io/address/0x64eB9cbc8AAc7723A7A94b178b7Ac4c18D7E6269/
https://github.com/PhilippSchindler/ethdkg/evaluation/
https://github.com/PhilippSchindler/ethdkg/evaluation/
https://ethgasstation.info/

6 P. Schindler et al.

4 8 16 32 64 128 256
number of nodes

50000

100000

200000

400000

800000

1600000

3200000

6400000

co
ns

um
ed

 g
as

registration
finalization
block gas limit

key sharing
dispute

Fig. 1. Measured gas consumption per contract phase and participant

Consequently, it is necessary to stick to the built-in primitives, and find effi-
cient alternatives for operations which are not available directly. One particular
limitation we had to work around is that there are no elliptic curve additions
and multiplications for one of the two groups used for BLS signatures. A pos-
sible solution used to overcome this problem is to perform the computations
offline and verify the correctness using the precompiled pairing contract. The
lack of built-in operations for e.g. symmetric key encryption or signature verifi-
cation further necessitated the implementation of practical alternatives by hand.
To give another example for the faced challenges, we recall the BLS signature
verification mechanism: a signature σ is valid if and only if the pairing check
e(σ, g2) = e(H(m), pubkey) is successful. The pairing check itself can be per-
formed efficiently using a precompiled contract in Ethereum. The involved hash
function H(·) however needs to map into an elliptic curve group. Consequently,
the built-in primitives for Keccak or SHA-256 hash functions cannot be used
directly. We follow the description of Boneh et al. [4] to implement a proper
hash function mapping map into the elliptic curve group.

Considering the protocol design itself, we present an efficient solution for
following challenges (in increasing complexity): (i) detection of malicious actions,
(ii) cryptographically proving such behavior within the smart contract, and (iii)
tolerating any minority of Byzantine participants without a protocol restart.

7 Conclusion

In this paper we highlight the importance of practical DKG protocols for a
wide range of cryptographic schemes and applications. We provide a working
and documented open source implementation of a practical DKG protocol ready
for deployment on the Ethereum platform. Thereby, we show how major en-
vironmental challenges can be overcome. Despite the constraints imposed by
Ethereum and the EVM, we not only demonstrate the feasibly of our approach,
but also highlight its practicability in regard to gas costs and the possible number
of participants.

Distributed Key Generation with Ethereum Smart Contracts 7

References

1. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News 15(1), 23–27 (1983)

2. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. pp. 435–464. Springer (2018)

3. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 416–432. Springer (2003)

4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Inter-
national Conference on the Theory and Application of Cryptology and Information
Security. pp. 514–532. Springer (2001)

5. Buterin, V., Reitwiessner, C.: EIP 197: Precompiled contracts for optimal ate pair-
ing check on the elliptic curve alt bn128 (2018), https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-197.md, Accessed: 2018-12-15

6. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: Practi-
cal asynchronous byzantine agreement using cryptography. In: Proceedings of the
nineteenth annual ACM symposium on Principles of distributed computing. pp.
123–132. ACM (2000), https://www.zurich.ibm.com/~cca/papers/abba.pdf

7. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical report/Dept. of Computer Science, ETH Zürich 260 (1997)

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. European transactions on Telecommunications 8(5),
481–490 (1997)

9. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 435, pp. 307–315. Springer
(1989)

10. Diffie, W., Hellman, M.: New directions in cryptography. IEEE transactions on
Information Theory 22(6), 644–654 (1976)

11. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 281–310. Springer (2015)

12. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 295–310. Springer (1999)

13. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview se-
ries consensus system (2018), https://dfinity.org/pdf-viewer/library/

dfinity-consensus.pdf, rev. 1
14. Kate, A.: Distributed key generation and its applications (2010)
15. Kate, A., Goldberg, I.: Distributed key generation for the internet. In: 2009 29th

IEEE International Conference on Distributed Computing Systems. pp. 119–128.
IEEE (2009)

16. Kokoris-Kogias, E., Alp, E.C., Siby, S.D., Gailly, N., Gasser, L., Jovanovic, P.,
Syta, E., Ford, B.: Calypso: Auditable sharing of private data over blockchains.
Cryptology ePrint Archive, Report 2018/209 (2018), https://eprint.iacr.org/
2018/209

17. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft pro-
tocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 31–42. ACM (2016)

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
https://www.zurich.ibm.com/~cca/papers/abba.pdf
https://dfinity.org/pdf-viewer/library/dfinity-consensus.pdf
https://dfinity.org/pdf-viewer/library/dfinity-consensus.pdf
https://eprint.iacr.org/2018/209
https://eprint.iacr.org/2018/209

8 P. Schindler et al.

18. Orbs Network: DKG for BLS threshold signature scheme on the EVM using solidity
(2018), https://github.com/orbs-network/dkg-on-evm, Accessed: 2018-12-11

19. Rabin, M.O.: Randomized byzantine generals. In: Foundations of Computer Sci-
ence, 1983., 24th Annual Symposium on. pp. 403–409. IEEE (1983), https:

//www.cs.princeton.edu/courses/archive/fall05/cos521/byzantin.pdf

20. Rabin, M.O.: Transaction protection by beacons. Journal of Computer and System
Sciences 27(2), 256–267 (1983)

21. Reitwiessner, C.: EIP 196: Precompiled contracts for addition and scalar multi-
plication on the elliptic curve alt bn128 (2018), https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-196.md, Accessed: 2018-12-15

22. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

23. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Hydrand: Practical continuous
distributed randomness. IACR Cryptology ePrint Archive 2018, 319 (2018)

24. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

https://github.com/orbs-network/dkg-on-evm
https://www.cs.princeton.edu/courses/archive/fall05/cos521/byzantin.pdf
https://www.cs.princeton.edu/courses/archive/fall05/cos521/byzantin.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md

	Distributed Key Generation with Ethereum Smart Contracts

