
Towards an Experiment Line on
Software Inspection with Human Computation

Stefan Biffl
Institute of Information Systems Eng.,
Information & Software Engineering,

Technische Universität Wien
A-1040 Vienna, Austria

+43 1 58801 18810
Stefan.Biffl@tuwien.ac.at

Marcos Kalinowski
Experimental and Applied Software

Engineering Research Group
Pontifical Catholic University of

Rio de Janeiro (PUC-Rio)
22451-900 Rio de Janeiro, Brazil

+55 21 (21) 3527-1510
Kalinowski@inf.puc-rio.br

Dietmar Winkler
Christian Doppler Laboratory for

Security and Quality Improvement in
the Production System Lifecycle,

Technische Universität Wien
A-1040 Vienna, Austria

+43 1 58801 18810
Dietmar.Winkler@tuwien.ac.at

ABSTRACT
Software Inspection is an important approach to find defects in
Software Engineering (SE) artifacts. While there has been exten-
sive research on traditional software inspection with pen-and-paper
materials, modern SE poses new environments, methods, and tools
for the cooperation of software engineers. Technologies, such as
Human Computation (HC), provide tool support for distributed and
tool-mediated work processes. However, there is little empirical ex-
perience on how to leverage HC for software inspection. In this vi-
sion paper, we present the context for a research program on this
topic and introduce the preliminary concept of a theory-based ex-
periment line to facilitate designing experiment families that fit to-
gether to answer larger questions than individual experiments. We
present an example feature model for an experiment line for Soft-
ware Inspection with Human Computation and discuss its expected
benefits for the research program, including the coordination of re-
search, design and material reuse, and aggregation facilities.
ACM CCS keywords: Software verification, Software defect analy-
sis, Empirical studies; Collaborative and social computing, Exper-
imentation.

Keywords
Software Inspection, Human Computation, Empirical Software En-
gineering, Experiment Lines.

1. INTRODUCTION
Software Inspection is an important Software Engineering (SE) ap-
proach to find defects in SE artifacts [6], such as software require-
ments or models. Inspection effectiveness and efficiency heavily
depend on human expertise, such as semantic understanding or spe-
cific real-world knowledge. For instance, finding defects in models
requires human expertise for checking model semantics that require
world/domain knowledge that is hard to model explicitly in the re-
quired detail and level of correctness [5].

Some major challenges of software inspections are (a) limited at-
tention span/effort for intensive inspection in a typical inspection

session and (b) limited method and tool support for software in-
spection coordination, in particular, for distributed inspection sup-
port, for scaling up inspections to large artifacts, and for ensuring
the quality of inspection contributions [15]. There has been exten-
sive research on traditional software inspection [1] with pen-and-
paper materials. Unfortunately, these approaches do not seem to
address these challenges properly, in particular, in the context of
large artifacts.

Modern SE poses new environments, methods, and tools for SE and
the cooperation of software engineers. There are new technologies,
such as Human Computation (HC), that can provide method and
tool support for distributed and tool-mediated work processes. In-
deed, our initial investigations indicated the feasibility of using
such a technology towards a distributed and scalable inspection
processes [16][17]. However, there is still little empirical experi-
ence reported on how to leverage HC for software inspection and
there is a need for further investigations, potentially conducting
several experiments in the context of an experiment family to build
relevant knowledge on the topic [3].

In this vision paper, based on our initial investigation experiences
in Austria and Brazil, we present the context for a research program
on the topic of Software Inspection with Human Computation, i.e.,
to investigate how traditional pen-and-paper inspection (process,
method, and tool support) can be adapted to modern SE practices
and technologies, such as Human Computation. We introduce the
concept of a theory-based experiment line to allow discussing and
designing experiment families, based on potential configurations of
cause-effect theory constructs for experiment treatments, that can
fit together to answer research questions beyond the possibilities of
individual experiments. We focus on two main research issues:
RI-1. How could an experiment line for Software Inspection with
Human Computation address variability for planning experiments?
To support the discussion, we envision and explain an example con-
cept of such an experiment line.
RI-2. What are the expected benefits of an experiment line for Soft-
ware Inspection with Human Computation? The discussion empha-
sizes research coordination (e.g., identification and distribution of
relevant investigation efforts), design and material reuse, and ag-
gregation facilities (e.g., providing a further understanding on con-
tributions to the theory and threats to validity).

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE-WSESE 2018, May, 2018, Gothenburg, Sweden.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

2. BACKGROUND AND RELATED WORK
This section summarizes the background on Software Inspection,
Human Computation, and recent work on Software Inspection with
Human Computation.

2.1 Software Inspection
Software Inspection improves software product quality by analyz-
ing software artifacts, detecting defects for removal before deliver-
ing these artifacts to later software life cycle activities. The tradi-
tional inspection process by Fagan [6] involves a moderator plan-
ning the inspection, inspectors reviewing the artifact, a team meet-
ing to discuss and register defects, passing the defects to the author
for rework, and a final follow-up evaluation by the moderator on
artifact quality assessment and the need of a new inspection.
There has been extensive research on traditional software inspec-
tion with pen-and-paper materials [4], investigating several soft-
ware inspection aspects by varying levels of specific experiment
factors. Web-based tools [8] have been proposed, but typically pro-
vide limited support for reading techniques and fall short in coor-
dination support when compared to modern SE capabilities. Theo-
retical contributions to the area of inspections (e.g. [7][9][10][14])
reveal theory constructs that help defining typical experiment factor
variation options and typical outcomes. Such variation options in-
clude artifacts (e.g., requirements, design, or code), inspector char-
acteristics (e.g., qualification, experience), process (e.g., inspection
with or without a group meeting), and method (e.g., reading tech-
niques). Typical observed outcomes are effectiveness and effi-
ciency of the inspection on individual and team level.

2.2 Human Computation
Human Computation provides method and tool support to coordi-
nate a potentially large group of workers for addressing small tasks
and for aggregating their results to address larger SE problems [11].
Mao et al. report on a survey on the use of crowdsourcing in SE
[12]. While crowdsourcing mechanisms, e.g., splitting up large-
scale tasks into smaller pieces of work, are frequently used in open
source environments and quality assurance has been tackled in con-
text of software testing, software inspection had not been covered
by crowdsourcing at the time of their survey [12]. However, split-
ting up large-scale documents into smaller pieces, inspecting these
small tasks within a group of experts, and aggregating identified
candidate defects might support scalability of inspection artifacts,
improve coordination between different experts (i.e., inspectors),
and increase effectiveness and efficiency of defect detection.
Therefore, we recently took a first attempt in this direction [15].

2.3 Software Inspection with Human Compu-
tation
Increasing needs for scalable and tool-supported software inspec-
tion and the availability of Human Computation approaches led to
the idea of Crowdsourced Software Inspection (CSI) [15]. Re-
cently, we conducted several experiments on Software Inspection
with Human Computation to gain initial experience on the benefits
and limitations of human computation in a software inspection pro-
cess. The CSI process consists of five main phases [15]: (a) Plan-
ning of the inspection process; (b) Text Analysis and Aggregation
(Figure 1, step 1), executed by a crowd of experts to derive relevant
building blocks of the model (i.e., Expected Model Elements -
EMEs) of a SE diagram; (c) Model Analysis to identify candidate
defects (Figure 1, step 2); (d) Analysis and Aggregation of candi-

1 Crowdflower: www.crowdflower.com

date defects (Figure 1, step 3); and (e) rework of inspection arti-
facts. Figure 1 presents the main phases related to defect detection
with the CSI process, i.e., text analysis, model analysis, and candi-
date defect analysis and aggregation: Step 1: the CSI management
prepares the defect detection task by providing EMEs and the
model scope; Step 2: a group of inspectors (i.e., the CSI workers)
identifies model defects based on EME-based verification micro
tasks and report defects if needed. Step 3: the CSI management
analyses individual defect reports and aggregates candidate defects
towards an aggregated defect list. Note that we use Crowdflower
(CF)1 for defect detection and defect analysis and aggregation.

Model Analysis:
Defect Detection

with CSI

Model & Model Scope

Reference
Document

Text Analysis:
Expected Model
Elements (EME)

CSI
Management

EME

CF Tool CSI worker

Candidate Defect
Analysis &

Aggregation

CSI
Management

Defect
Reports

Aggregated
Defect List

CF Tool

1 2 3

Figure 1. Defect Detection with

Crowdsourced Software Inspection.
Initial results [15][16][17] showed that the CSI process is a prom-
ising approach for supporting model inspection, e.g., by addressing
different aspects of the inspection artifact and focusing on different
defect types. Although initial results are promising, there is a need
for further investigations on variations of the CSI process. In con-
text of a research program, such variations can include (a) different
artifacts (e.g., model types and sizes), (b) CSI process variants and
extensions (e.g., defect validation tasks), and (c) method/tooling to
better support inspectors in defect detection in distributed environ-
ments and to address scalability issues.

3. RESEARCH ISSUES
The main goal of this vision paper is to present the context for a
research program on the topic of Software Inspection with Human
Computation and to envision the concept of an experiment line to
support the design of experiment families that could help to coor-
dinate a research program. We discuss two research issues:
RI1. How could an experiment line for Software Inspection with
Human Computation address variability for planning experiments?
In a broader software engineering context, Software Product Lines
(SPL) provide means to efficiently design, produce, and maintain
multiple similar software variants, exploiting their common prop-
erties and managing their variabilities [13]. We identified similar
challenges for families of experiments in a research program, as
their designs also involve common properties and variabilities.
Therefore, we suggest that the variabilities of an experiment line
could be represented using feature models, which have been widely
used in the SPL context [2]. In the context of an experiment line,
features are theory constructs considered in the experiment design
to define the scope or to represent factors (i.e., independent varia-
bles), factor levels, or response variables (i.e., dependent variables).
The variations between experiments in the context of a research
program consists of investigating different factors (or factor levels)
and measuring different response variables on a similar topic. We
draft and explain an example of such experiment line feature model
for software inspection with human computation by revisiting typ-
ical inspection theory constructs used in inspection experiments.
RI2. What are the expected benefits of an experiment line for Soft-
ware Inspection with Human Computation?

We discuss three relevant expected benefits of using an experiment
line to structure such research program. First, research coordina-
tion within and beyond a research group. We believe that focusing
on the theory and analyzing potential investigation variabilities can
support the identification and distribution of relevant investigation
efforts. Second, reuse of the experiment design and material (e.g.,
artifacts) among experiment variants. Third, better understanding
the variabilities and their relation to theory can provide aggregation
facilities. Indeed, if variation is planned, the data coming from the
experiments in the experiment line may be aggregated more easily.

4. A VISION OF AN EXPERIMENT LINE
In this section, we provide an example of how an experiment line
could look like for Software Inspection with Human Computation.
We represent the variabilities of the experiment line using a feature
model, which has been widely used to represent common properties
and variabilities in the SPL area [2].
To build the feature model, we revisited typical software inspection
theory constructs (e.g., the ones presented in [7][8][10][14]) that
have been used to define the scope, factors, factor levels or response
variables in inspection experiments. Thereafter, we complemented
the model discussing new constructs that could be of interest for the
particular investigation context of Software Inspection with Human
Computation. Figure 2 shows an excerpt of the resulting feature di-
agram. Due to space constraints, we did not represent the theory
constructs used for response variables (e.g., defect detection effec-
tiveness, efficiency, and coordination effort).

Figure 2. Feature Model for Experiments on Software

Inspection with Human Computation.
While Figure 2 is not supposed to be complete, it shows that an
inspection experiment of the represented experiment line involves
(mandatory): an inspection target artifact, a specific inspection ac-
tivity to be conducted by inspectors with certain inspector charac-
teristics using tools and methods. Figure 2 also shows that, while
this type of experiment tends to focused on specific activities, there
is an option on investigating how activities are performed in the
context of different inspection processes (e.g., inspection with or
without a group meeting, distributed).
In Figure 2, it is easy to see that, inspection experiments in the de-
signed family have a scope defined with fixed (‘alternative’ op-
tions) artifact types and activities. Inspector characteristics, tools
and methods, on the other hand, can be chosen as experiment fac-
tors, given that they can have more than one options that can be
applied in the context of an experiment (‘or’ options). These op-
tions should be considered as factor levels.
The feature model also allows adding constraints. An example of
such constraint is that experiments using the method CSI for HC
(the human computation approach) require human computation
tool support. This context provides a new process and new options
for method and tool support to investigate different activities. An

activity that deserves particular attention in this context is defect
validation, given that several inspectors will report defects using
HC tool support, leading to the need of assuring the quality of these
contributions. This context also affects the response variables (not
depicted) of interest. For instance, a new variable that becomes rel-
evant in this context is the overall inspection coordination effort.
Indeed, it is easy to see that a complete investigation of this context
would involve several experiments, ideally conducted in the con-
text of a research program involving several research groups.
After the feature model has been discussed and built, valid experi-
ment configurations can be identified and used as input for collab-
orations options within and beyond a research group. Each experi-
ment configuration involves a combination of theory construct se-
lections that can be stated as theoretical propositions to be further
investigated. Hence, the experiment configurations are directly re-
lated to the underlying theory (where the constructs came from).
After identifying experiment configurations of interest, they should
be analyzed based on the practical relevance, cost to conduct the
experiment and data collection, and the risk of research (including
threats to validity).
An example experiment configuration could involve comparing
“design inspection defect detection by novice inspectors, using pen
and paper support to conduct scenario-based reading” with “de-
sign inspection defect detection by novice inspectors, using a HC
tool (e.g., Crowdflower) support to follow the CSI for HC method”
in terms of effectiveness and efficiency.
Besides the variation possibilities, the feature model also allows
identifying common properties between experiments, which can be
exploited to encourage experiment design and material reuse and
facilitate research outcome aggregation.

5. BENEFITS OF AN EXPERIMENT LINE
The main expected benefits of using the experiment line concept
are related to research program coordination, design and material
reuse, and providing aggregation facilities. A brief discussion on
the rationale behind each of these expected benefits follows.
Research program coordination. Collaborating researchers can
jointly build the experiment line by discussing common properties
and variabilities of experiments based on relevant theory constructs
and existing experiments and materials. Thereafter they can use the
experiment line to compare different configuration options and to
evaluate which configurations could be particularly relevant. Once
the relevant experiment configurations have been identified, the re-
searchers can divide the overall effort strategically among them-
selves collaborating on different experiments, considering the costs
and risks to conduct each experiment. In this way, the researchers
can jointly operate families of experiments that can fit together to
help answering research questions beyond the possibilities of indi-
vidual experiments.
Design and material reuse. One of the main benefits of software
product lines is related to reuse [13]. Similarly, we believe that co-
operating researchers (or research groups) would benefit from a
common platform to share research designs and materials. Experi-
ments involving similar constructs are candidates for sharing de-
sign elements and materials. For instance, experiments on design
inspections could reuse models that are being inspected, experi-
ments considering inspector characteristics could share characteri-
zation questionnaires, and experiments measuring the same re-
sponse variables may reuse definitions and statistical analysis pro-
cedures. More systematic reuse approaches for experiment replica-

tions are challenging and relevant especially in the context of ex-
periments conducted with human subjects, in which undesired var-
iations can lead to serious threats to validity.
Aggregation facilities. If variations between experiments are
planned, data coming from the different experiments may be aggre-
gated more easily. Better understanding the variabilities between
different experiments facilitates proper aggregation, mitigating rel-
evant threats to validity. For instance, if experiments share similar
constructs (e.g., exact replications) they may be aggregated to im-
prove internal and conclusion validity. Experiments with planned
construct variations, on the other hand, might be helpful to gener-
alize results and improve construct and external validity. If experi-
ments families are designed in an unplanned way and constructs
vary widely, the overall common view may be limited and aggre-
gations might lead to conclusions with serious threats to validity.

6. CONCLUSION AND FUTURE WORK
In this vision paper, we presented the context for a research pro-
gram on the topic of Software Inspection with Human Computation.
Based on this context, we introduced the concept of a theory-based
experiment line to allow designing experiment families that can fit
together with the purpose of answering research questions beyond
the possibilities of individual experiments.
Based on this context, we discussed the following two research is-
sues: (a) RI-1. How could an experiment line for Software Inspec-
tion with Human Computation address variability for planning ex-
periments? and (b) RI-2. What are the expected benefits of an ex-
periment line for Software Inspection with Human Computation?
To address the research issues, we revisited traditional theory mod-
els on software inspection to derive typical theory constructs that
warrant investigation and complemented those constructs in the
light of software inspection with human computation. Based on
these constructs we built a variability model expressed as a feature
model and discussed potential benefits of working with families of
experiments as part of an experiment line.

Main expected benefits comprise (a) supporting strategically plan-
ning a family of studies to facilitate the cooperation of research
groups, (b) supporting systematic experiment design and material
reuse, and (c) helping to provide a further understanding to allow
the proper aggregation of individual study results, in particular of
studies involving human subjects, where undesired variations can
lead to serious threats to validity. Given these potential benefits for
experimental collaborations within and beyond research groups, we
believe that the concept of experiment lines should be further in-
vestigated and evolved.

7. ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry for Digital,
Business and Enterprise and the National Foundation for Research,
Technology and Development is gratefully acknowledged.

8. REFERENCES
[1] Aurum A., Petersson H., Wohlin C.: “State-of-the-Art: Soft-

ware Inspection after 25 years”, Software Testing Verifica-
tion and Reliability, 12(3), pp. 133- 154, 2002.

[2] Acher, M., Lopez-Herrejon, R.E. and Rabiser, R.: “Teaching
software product lines: A snapshot of current practices and

challenges”, ACM Trans. on Computing Education (TOCE),
18 (1), 31 pages, 2017.

[3] Basili, V.R., Shull, F. and Lanubile, F.: “Building knowledge
through families of experiments”, IEEE Trans. on Software
Engineering, 25(4), pp.456-473, 1999.

[4] Biffl S., Freimut B., Laitenberger O.: “Investigating the cost-
effectiveness of reinspection in software development”, In:
Proc. of ICSE, pp.155-164, 2001.

[5] Brambilla M., Cabot J., Wimmer M.: “Model-Driven Soft-
ware Engineering in Practice”, Morgan & Claypool publish-
ers, 2017.

[6] Fagan, M.E., “Design and Code Inspection to Reduce Errors
in Program Development”, IBM Systems Journal, vol. 15, no.
3, pp. 182-211, 1976.

[7] Jeffery R: “Empirical Methods and Theory Research in Soft-
ware Engineering: State of the Art and State of Practice”, Key-
note, Asia-Pacific Software Engineering Conference, 2017.

[8] Kalinowski, M., Travassos, G.H.: “A computational frame-
work for supporting software inspections”, In: Int. Conf. on
Automated Software Engineering (ASE), pp. 46-55, 2004.

[9] Laitenberger, O., DeBaud, J.-M.: “An encompassing life cycle
centric survey of software inspection”, Journal of Systems and
Software, vol. 50 (1), pp. 5–31, 2000.

[10] Land L.P.W., Wong B., Jeffery R.: “An extension of the be-
havioral theory of group performance in software develop-
ment technical reviews”, In: Proc. of APSEC, pp.520-530,
2003.

[11] LaToza T.D., van der Hoek A.: “Crowdsourcing in Software
Engineering: Models, Motivations, and Challenges”, IEEE
Software, vol. 33 (1), pp. 74-80, 2016.

[12] Mao K., Capra L., Harman M., Jia Y.: “A survey of the use of
crowdsourcing in software engineering”, In: Journal of Sys-
tems and Software, 28p, 2016.

[13] Pohl, K., Böckle, G., van der Linden, F.: “Software Product
Line Engineering: Foundations, Principles, and Techniques”,
Springer, 2005.

[14] Sauer C., Jeffery D.R., Land L., Yetton P.: “The effectiveness
of software development technical reviews: a behaviourally
motivated program of research”, IEEE Transactions on Soft-
ware Engineering (TSE), 26(1), pp.1-14, 2000.

[15] Winkler D., Sabou M., Petrovic S., Carneiro G., Kalinowski
M., Biffl S.: “Improving Model Inspection with Crowdsourc-
ing”, In: International Workshop on Crowdsourcing in Soft-
ware Engineering (CSI-SE), ICSE, pp.30-34, 2017.

[16] Winkler D., Sabou M., Petrovic S., Carneiro G., Kalinowski
M., Biffl S.: “Investigating Model Quality Assurance with a
Distributed and Scalable Review Process', In: Ibero-American
Conf. on Software Engineering (CIBSE), pp.141-154, 2017.

[17] Winkler D., Sabou M., Petrovic S., Carneiro G., Kalinowski
M., Biffl S.: “'Improving Model Inspection Processes with
Crowdsourcing: Findings from a Controlled Experiment”, In:
European Conference on Systems, Software & Service Pro-
cess Improvement and Innovation (EuroSPI), CCIS, volume
748, pp.125-137, 2017.

	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	2.1 Software Inspection
	2.2 Human Computation
	2.3 Software Inspection with Human Computation

	3. RESEARCH ISSUES
	4. A VISION OF AN EXPERIMENT LINE
	5. BENEFITS OF AN EXPERIMENT LINE
	6. CONCLUSION AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES

