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Abstract

Conceptual domain models, such as taxonomies, knowledge
graphs or EER diagrams are core to all information systems.
The task of verifying the correctness of these models is of
high interest to the knowledge and software engineering com-
munities and attracted the first solution approaches using hu-
man computation. Yet, since these solutions are published
within the boundaries of their communities, there is a lack
of concerted work on this task. As a first step to alleviate this
status quo, we formalize the problem of verifying conceptual
models and propose a generic approach (VeriCoM) to solve
it with human computation techniques. We show how Veri-
CoM was applied in a software engineering use case focus-
ing on verifying the correctness of an EER diagram against a
system specification document. An evaluation of VeriCoM in
a series of four workshops within one controlled experiment
performed with a crowd of semi-experts lead to the identifi-
cation of a set of defects with precision of 73% and a recall
from a Gold Standard defect set of 63%.

Introduction
Information systems heavily rely on several conceptual do-
main models during their creation and operation. In Soft-
ware Engineering (SE), models, such as Extended Entity
Relationship (EER) diagrams, diagram variants based on
the Unified Modelling Language (UML) or Petri nets, play
an important role in various software engineering life cy-
cle phases (Brambilla, Cabot, and Wimmer 2012). Models
can be used as foundation for building software artifacts and
products, e.g., for code and test case generation, or detailed
planning documents based on high level or abstract mod-
els. In Knowledge Engineering ontologies, taxonomies, and
knowledge graphs are conceptual representations of the do-
main in which the information system is used and often act
as schema for storing domain data (Pan et al. 2017).

The quality of the conceptual models of underlying infor-
mation systems is success-critical for later usage, because
defects can have a major impact on the quality of the result-
ing artifacts (e.g., on code, test cases, or more detailed plan-
ning documents). Therefore, ensuring the quality and the
correctness of these models is an important research topic,
addressed in diverse research fields.
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In Knowledge Engineering, ontology evaluation focuses
on “checking the technical quality of an ontology against a
frame of reference” such as a gold standard ontology, a rep-
resentative domain corpus, a specification document, or gen-
eral human knowledge (Sabou and Fernández 2012). Some
evaluation tasks can be automatically performed: reasoning
can assess the logical consistency of the model based on the
semantics of the encoding language; lexical comparison can
approximate domain coverage with respect to a corpus. Yet,
a subset of model evaluation tasks require human input. This
is the case of ontology verification which “compares the
ontology against the ontology specification document, thus
ensuring that the ontology is built correctly (in compliance
with the specification)” (Sabou and Fernández 2012).

Similarly, in Software Engineering, besides automated
model verification approaches based on language semantics,
Software Inspection (SI) is a well-established approach (Au-
rum, Petersson, and Wohlin 2002) that supports defect de-
tection of various document types early in the software life
cycle by making use of human expertise from a group of in-
spectors (Fagan 1976). During software model inspection,
inspectors check whether a conceptual model correctly and
completely represents the content of a reference document
(Laitenberger and DeBaud 2000).

However, the manual verification of conceptual models
by experts is time-consuming, costly and faces several chal-
lenges even when following well-established procedures
such as in software inspection, e.g., difficulty to cover the
entire inspection object during typical sessions of two hours,
high costs and time needed for coordinating the inspection
group without dedicated tool support (Winkler et al. 2017).
In this context, human computation techniques promise, at
a minimum, tool support and a better coordination of the
verification problem as well as its outsourcing to crowds of
layman or semi-experts.

Since the problem of verifying conceptual models is of
high importance to at least two research communities, a
number of approaches have successfully used human com-
putation techniques to address this problem by enlisting
crowds of experts or layman. However, because these ap-
proaches were mostly proposed within the boundaries of
their own research areas, there is a lack of understand-
ing of their commonalities and differences. This hampers a
concerted effort on the model verification problem, the ex-



Table 1: Overview of related work.
Paper Evaluated Elements Frame Of Reference Selection Defect Types
(Acosta et al. 2016) - Expert Data Triples Human Knowledge Random/Manual Defect Taxonomy
(Acosta et al. 2016) - Crowd Data Triples Human Knowledge Random 3 or 2 defects
(Mortensen et al. 2015; 2016) Subsumption Relations Human Knowledge Filtering Binary
(Wohlgenannt et al. 2016) Terms, Relations Human Knowledge None Binary
(Sun et al. 2016) Taxonomy N/A N/A N/A
Own work EER Model System Specification Guided Open ended

change of ideas between communities, the comparison of
solutions and exchange of data e.g., through benchmark-
ing.Therefore, our research question in this paper is:

RQ: How to propose a human computation based solution
to the problem of model verification that is applicable across
research areas?

To address our research question, we generalize the prob-
lem of conceptual model verification across the communities
of knowledge and software engineering. To that end, we of-
fer the following novel contributions:
• A formalization of the conceptual model verification

problem applicable across the fields of knowledge and
software engineering which can serve as a bases for defin-
ing human computation-based solutions.

• An approach for the Verification of Conceptual Models
(VeriCoM) with human computation techniques that re-
lies on the generic problem formalization. VeriCoM in-
troduces the idea of splitting the complex task of verify-
ing a model into individual tasks focused on verifying one
model element at a time. Additionally, it guides workers
towards identifying predefined defect types.

• An evaluation of VeriCoM in a software engineering use
case where we verified an EER diagram against a soft-
ware specification. We tested the approach in a series of
four workshops within one controlled experiment with 53
semi-experts and found that it can lead to detecting defect
sets with precision values of 73% and a coverage of over
60% over a manually identified defect set.
Next, we present related work, the generic problem for-

malization and the VeriCoM approach. We describe our soft-
ware engineering use case and its experimental evaluation
before concluding with lessons learned and future work.

Related Work
Representative work on evaluating conceptual models with
human computation is shown in Table 1 and discussed next.
In Knowledge Engineering, and especially in the Semantic
Web, several knowledge management tasks require human
contributions (Bernstein et al. 2014). Accordingly, a num-
ber of studies have successfully applied human computation
techniques to evaluating conceptual models.

In (Acosta et al. 2016), authors report on evaluating the
quality of triples from Linked Data Knowledge Graphs,
namely DBpedia (Auer et al. 2007), by enlisting both experts
and layman crowds. The goal is to identify quality issues
frequent in DBpedia triples. During expert-sourcing, experts
can opt for one of three strategies for data selection: (a) ran-
dom suggestion of data, (b) working on data from a selected

class, or (c) manual selection of data. Experts are asked to
assign to each evaluated triple one quality issue from a pre-
defined taxonomy of issues. For the crowdsourced experi-
ments, data is selected randomly. In a first stage, workers se-
lect one of three possible issues (i.e., value, link, datatype),
then in a second phase they solve tasks in jobs dedicated to
individual quality issues and specify whether a triple is cor-
rect/incorrect with respect to that issue.

Mortensen et al. (2015, 2016) report on using crowdsourc-
ing for verifying the correctness of subsumption relations in
large, domain-specific ontologies such as SNOMED and the
Gene Ontology. Given the large size of these medical on-
tologies, their entire verification is not feasible. Instead, au-
thors focus on evaluating non-asserted (i.e., derived), non-
trivial and direct relations. The verification is performed on
CrowdFlower, where a task contains the relation to be eval-
uated, described in natural languages and the definition of
related concepts. Workers are asked to make a binary choice
on the correctness of the relation and provide an explanation.
For SNOMED, comparison with a baseline expert evaluation
showed that crowds have comparable agreement rates with
experts, and therefore can function as a scalable assistant in
ontology engineering.

In order to bring crowdsourcing closer to the work of on-
tolgy engineers, the Protégé ontology editor (Musen 2015)
was extended with a plugin that allows the crowdsourcing of
ontology engineering tasks from within the editor (Wohlge-
nannt, Sabou, and Hanika 2016). Some of these tasks en-
able the evaluation of the correctness of ontology elements,
namely: (a) the relevance of a term for a domain of interest
or (b) the correctness of relations. The selection of the ele-
ments to be evaluated depends on the user of the plugin. The
automatically generated crowdsourcing tasks collect binary
decisions on the correctness of the model elements.

Differently from the approaches mentioned above, (Sun et
al. 2016) aim to evaluate entire taxonomies in terms of how
well they support user navigation. They evaluate the qual-
ity of the taxonomy as a function of the quality of the task
that it enables (i.e., efficient navigation indicated by reduced
time of navigation and number of clicks). Their approach is
an example of a task-based evaluation, originating from the
ontology evaluation area (Porzel and Malaka 2004).

In Software Engineering, crowdsourcing techniques are
wide-spread and support all stages of the software engineer-
ing life-cycle (LaToza and van der Hoek 2016), (Mao et al.
2017). However, work on the verification of software spe-
cific conceptual models is limited to our earlier work, in
which we verified Extended Entity Relationship (EER) di-
agrams with respect to a systems specification.The selection



Figure 1: The VeriCoM Approach.

of the model elements to verify was guided by the content
of the specification, and workers provided defects as part of
open ended tasks, leading to overly complex aggregation.

We conclude that the problem of evaluating conceptual
models with human computation has been addressed in both
the knowledge and software engineering communities. Most
approaches report on an evaluation where the frame of refer-
ence is generic human knowledge.Techniques for selecting
the model elements to be evaluated differ across approaches
and mostly resolve to selecting a subset of the model, often
randomly. Most approaches collect binary decisions about
the correctness of a model element. By formalizing the prob-
lem of verifying conceptual models at a generic level, we
propose an approach which explores in more depth selection
strategies and collecting multiple defect types.

Problem Formalization
The task of conceptual model verification with respect to a
frame of reference, is formally a function (γ) that applied to
the model (M ) and the frame of reference (FR) leads to the
identification of a set of defects (D).

γ(M,FR)→ D (1)

We consider a conceptual domain model (M ) to be a col-
lection of model elements (me), M = ME. Let ME1 ...
MEn be sets of model elements of different types, such that
(M = ∪nMEn). Minimally, M is the union of at least two
model element sets, M =MEC ∪MER, where MEC rep-
resents the concepts in a domain and MER their relations.
M can be more complex, containing other types of model
elements such as concept attributes, relation attributes, or in-
stances in the domain.

The model is verified with respect to a Frame of Reference
(FR), which is a complementary knowledge source that in-
corporates (approximately) the same domain knowledge as
the model. Examples of FRs are system specifications, doc-
ument corpora representative for the domain but also general
(common sense) knowledge. One type of frame of reference

that is often used to support model verification consists of
textual specifications (Spec). We will focus on verification
tasks guided by such textual specifications.

Let an expected model element (eme) be a model ele-
ment mentioned in Spec and expected to be modelled in M .
The collection of all emes (EME) represents the building
blocks of the model to be verified (e.g., entities, attributes,
relations, and relation attributes). The task of assigning each
eme to a representative evidence from Spec is:

ϕ(EME,Spec)→ EVEME,Spec (2)

The setEME overlaps, but must not be identical with the
set of model elements inM . The intersection of the expected
and the actually modelled model elements contains all those
emes for which an equivalent model elementme exists (i.e.,
the same as or a synonym of eme denoted with ≈).

EME ∩ME = {eme|∃me ∈ME ∧ eme ≈ me} (3)

We define a relevant evidence for an eme within a spec-
ification Spec as an arbitrary long text chunk from Spec
where the eme is mentioned (Eveme,Spec). The evidence
should contain information that is representative for describ-
ing the eme and the role it should play in the model M . Let
EVEME,Spec represent the collection of Spec evidences for
all eme instances of EME.

The output of the model verification task (γ(M,FR)) is a
set of defects (D) in the model M with respect to the Spec.
Each defect d ∈ D refers to whether and how one eme is
modelled in model M . Defects can be of several types, de-
pending on how the (expected) model element appears in
Spec and in M . Defects of type Missing should be declared
when an eme is contained in the specification but not mod-
eled in the model, and therefore, it refers to elements from
the set EME \ME. Defects of type Superfluous refer to
elements modeled in M that are not mentioned in Spec, that
is ME \ EME. Besides these defect types, other domain
specific defect types might be identified as exemplified in
our use case.



The VeriCoM Approach
Based on the formalization above, we propose a generic ap-
proach for Verifying Conceptual Models (VeriCoM) with
respect to a textual specification using human computation
(see Figure 1). In VeriCoM, the EME set plays a central role
in selecting the parts of the model that are inspected. The
main stages of VeriCoM are:

1. Data Preparation starts with identifying the concep-
tual model M to be verified as well as a representative spec-
ification Spec which can be used as a basis for the verifi-
cation. Next, the focus of the verification needs to be de-
cided, that is, which model element types will be verified
(e.g., MEC , MER).

1.1. Identification of EME. Within Spec, a set of men-
tioned model elements needs to be identified which are ex-
pected to appear in the model M . For shorter specifications
this step can be performed manually, but larger specifica-
tions will require an automation of this step by relying on
natural language processing techniques, crowdsourcing or a
combination thereof. In other work, not reported in this pa-
per, we have performed experiments of crowdsourcing this
task and obtained encouraging first results1.

1.2. Identification of EVEME,Spec. For assigning each
eme to a representative evidence from Spec, the function
ϕ should lead to a set of evidences that are (a) represen-
tative for each eme; (b) small enough to be amenable for
use within human computation tasks; and at the same time
(c) capable of conveying the necessary context to the work-
ers. For smaller specifications, this function can be imple-
mented manually. For larger specifications, automatic tech-
niques based on natural language processing should be de-
veloped. Here an important decision lies in how to automat-
ically detect a relevant evidence(s) for a given eme. Some
options are: (a) assigning the evidence where the eme is first
mentioned; (b) assigning the evidence (e.g., a paragraph)
where the eme is most often mentioned; or (c) instead of
choosing a single representative evidence, selecting all evi-
dences in which an eme is mentioned.

1.3 Definition of Defect Types. Beside the domain inde-
pendent defect types defined during problem formalization,
in this step defect types should be identified that are typ-
ical for the given domain. Being aware of concrete defect
types enables creating task interfaces that can guide work-
ers towards identifying these defect types, thus reducing the
number of defects that need to be provide in free-text. This
has a positive influence on the aggregation process as typed
defects are easier to aggregate than free-text defects.

2.Task Design and Execution. For an eme and a relevant
evidence from the specification, the task should enable the
detection of various defect types. In Table 2 we depict the
decision table underlying a proposed task design. For each
eme and the corresponding evidence, the task design guides
the worker’s judgment process as follows:

Relevance: First, the worker is asked to judge based on the
evidence whether the eme is relevant and should be rep-
resented in the model.

1Reference withheld to preserve author anonymity.

Table 2: Decision table underlying task design.
EME EME EME Interpre-
Relevant? in Model? Correct? tation
Relevant In Model Correct Correct

Not Correct Defect
In Model Correct Correct
as Synonym Not Correct Defect
Not in Model Defect: Missing

Not In Model Defect: Superfluous
Relevant In Model Defect: Superfluous

as Synonym
Not in Model Correct

Representation: Next the worker turns his attention to the
model itself and locates the eme therein. We distinguish
three cases: (a) when the eme or (b) a synonym thereof is
represented in M ; (c) when the eme is missing from M .
If a non-relevant eme appears in M as itself or as a syn-
onym then a superfluous defect has been identified. Non-
relevant emes that are not inM lead to the conclusion that
the model is correct. If the eme was judged relevant but
was not found in M , then a missing defect is registered.
If however a relevant eme is in the model (as itself or a
synonym), then it’s correctness is judged next.

Correctness and Interpretation: Relevant emes (or their
synonyms) appearing in M are evaluated on whether they
are modelled correctly. If the modelling is found incorrect
a defect should be reported either as free text or a typed
defect specific to the application domain.

The output of the human computation task is a collec-
tion of individual Defect Reports (DR). These are quadru-
ples connecting an eme and its evidence to a defect
type based on the judgment of individual workers (Wx):
DR(eme,Ev(eme,Spec),Wx, Dtype).

3. Aggregation. Defects reported for an eme by n
workers are aggregated in order to identify a final de-
fect type. For each defect type reported for that eme,
we compute an agreement coefficient (ACoeff ) as the
inter-rater agreement on that defect type. The defect type
with the highest ACoeff (and, optionally, above a thresh-
old value) is selected as the final defect type for the
eme. If there is a tie between multiple defect types, then
the aggregation labels this defect as Undecided. Aggrega-
tion for free-text defects must be performed manually or
within a follow-up human computation task. The output
of aggregation are Aggregated Defect Reports denoted as:
ADR(eme,Ev(eme,Spec), ACoeff,W1..n, Dtype).

4. Evaluation. The goal of this step is to evaluate the
quality of the defect detection process in order to iden-
tify whether it is satisfactory or whether it needs to be
improved. Ideally, the collected defects ADRs could be
matched to a collection of true defects (TDs) (i.e., known
defects) and recall and precision metrics could be computed.
However, in the lack of such a gold standard, the result-
ing defect reports could be manually evaluated (this will
shed light on the precision of the verification γ but not on
its recall). Manual assessment is time consuming, therefore
variations might be considered here: for example, only de-
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Figure 2: Model verification task containing (a) the model element, evidence scenario and model and (b) questions for verifica-
tion guidance.

fect reports with high ACoeff might be selected for man-
ual evaluation. The output of this stage consists of veri-
fied defect reports, possibly aligned to a true defect (TDk):
V DR(eme,Ev(eme,Spec), ACoeff, TDk,W1..n, Dtype)

Software Engineering Use Case
In this section we exemplify how we adapted VeriCoM to
a Software Engineering use case, where the correctness and
completeness of an EER model needs to be checked with
respect to a textual specification (i.e., a reference document).

1. Data Preparation. Our use case relies on the follow-
ing elements2. Spec is a textual requirements specification
describing typical processes in the context of a restaurant
management system. The document is 3 pages long, is writ-
ten in English and consists of an introduction section and
7 paragraphs each focusing on diverse aspects of the sys-
tem to be designed, e.g., order management, cooking man-
agement, accounting. We refer to these paragraphs as sce-
narios. For instance, a scenario related to “food items and
set menu management” is displayed at the top-right of Fig-
ure 2a. This requirements specification represents the refer-
ence document and was considered to be correct.

The conceptual model M under investigation is an EER
diagram including 9 entities, 13 relationships, and 32 at-
tributes. The model is displayed in Figure 2a. Formally,
M =ME ∪MR ∪MEA ∪MRA ∪MRM , where:
• ME is the set of all entities, e.g., customer, order, invoice;
• MR is the set of relations declared between entities, e.g.,

(customer, orders, order);
2Use case data can be shared with interested researchers, but

will not be made public to avoid disclosing defects to students tak-
ing part in future replication studies.

• MEA is the set of all entity attributes, e.g., cus-
tomer.name;

• MRA is the set of all relation attributes, e.g., (customer,
orders, order).date;

• MRM is the set of all relation multiplicities, e.g., cus-
tomer(1), orders, order(0..n)).

The goal of the use case is to verify the modelling of all
five model element types. The experiment team, i.e., the au-
thors of this paper, included 21 defects into this model rep-
resenting typical defect types in context of SE, e.g., miss-
ing entities, incorrect attributes, and wrong/missing relations
and relation multiplicities. These true defects are used for
evaluating the performance VeriCoM.

1.1. EME identification was performed manually given
the small size of the specification and lead to the identifica-
tion of 120 emes. We also experimented with crowdsourcing
eme identification and obtained encouraging results3.

1.2. Identification of EVEME,Spec was also performed
manually. For the use case at hand, we observed that the 7
scenarios of Spec were self-contained and offered the right
trade-off between being sufficiently succinct to be part of a
task while still offering sufficient context to the workers. We
therefore decided in using scenarios as representative evi-
dence. For assigning an eme to a scenario we created an
occurrence matrix between the elements of the EME and
the seven scenarios. We assigned each eme to the scenario
where it was mentioned the most often.

1.3 Definition of defect types. Two defect types that fre-
quently surface in EERs are: (1) assigning the wrong key to
an entity (keys are underlined entity attributes in Figure 2a);

3Reference withheld to preserve author’s anonymity.



or (2) specifying an incorrect multiplicity for relations. Ac-
cordingly, for our use case we identified four defect types:
Missing, Superfluous, WrongKey, WrongRelM. Defects other
than these types are of type Wrong.

2.Task design and execution. We used CrowdFlower as
a crowdsourcing engine. We designed a task where workers
were given the modelM , an eme and a relevant evidence for
the eme (Eveme,Spec) and asked to verify the modelling of
the eme (see top-part of the task interface in Figure 2a). Be-
cause the specification’s 7 scenarios were used as evidence,
tasks referring to the same scenario were grouped within one
job to lower the cognitive overhead of switching between
scenarios. The general description of the system to be de-
signed (i.e., the introductory part of Spec) was provided as
part of the task’s instructions for overall context.

Workers are guided in the verification process by a set of
questions which appear following the logic depicted in Ta-
ble 2 (see bottom-part of the task interface in Figure 2b).
When a defect of other type than Missing or Superfluous is
reported, the interface will provide different questions de-
pending on the type of the eme. Namely, if the eme is an
entity attribute, the worker will be able to choose between
the defect type WrongKey or specifying another defect as
free text. If the eme is of type relation multiplicity, the inter-
face allows selecting the predefined defect type WrongRelM
or specifying another defect of undefined type (e.g., Wrong).
For defects specified as free text a controlled language is
provided. This controlled language is explained in the task
instructions and reminded under the relevant input text-box.

When a node in the decision tree from Table 2 is reached,
the CrowdFlower task interface automatically generates a
summary of the evaluation based on the selections made. At
this point the worker can either accept this summary or re-
visit his answers to change the final summary.

3. Aggregation. The aggregation of the judgments col-
lected is performed for each eme following the algorithm of
the general approach. If the final defect type is Wrong then
the individual responses are manually checked to identify
whether the workers identified the same or different defects.

4. Evaluation. We leveraged the available collection of
true defects to evaluate the defect detection process. To that
end, we matched the aggregated defect reports to the gold
standard of true defects, based on eme and defect type.

Experimental Evaluation of VeriCoM
To evaluate the performance of VeriCoM, we set up a con-
trolled experiment in a medium-scale classroom setting. Be-
cause of laboratory space restrictions we split the experi-
ment over 4 workshops following the same setup.

Experiment Setup
Participants were undergraduate students enrolled in a soft-
ware quality assurance course at our university in fall 2017.
We opted for an internal crowd of students as opposed to
layman crowds for two reasons. Firstly, model verification
requires specific software engineering knowledge (e.g., best
practices about entity keys) that is not general human knowl-
edge and we doubted it can be successfully collected in

Figure 3: Experiment Setup.

crowdsourcing platforms. Having said so, future work will
investigate whether model verification could be split in ways
that could also benefit from layman contribution in terms
of general domain knowledge (e.g., about restaurants in our
use case). Second, as students were learning about model
verification as part of their course, this experiment allowed
them to practice their skills and to get feedback on their over-
all performance in the style of learning analytics (Ferguson
2012). Participation in the experiment was voluntary and at-
tracted 53 students over all workshops. In each workshop
participants were assigned randomly to two study groups.

Figure 3 presents the experiment setup replicated over
four workshops. The setup contained four main stages:

1. A preparation stage (prior to the workshops) extended the
data preparation described previously by setting up the
CrowdFlower jobs. We split the data into 12 batches, with
10 emes per batch that had the same scenario as evidence.
We created 12 jobs based on this data (one for each batch).

2. A tutorial (30 min) that explained the goal of the exper-
iment and how to execute the experiment tasks (the CF
jobs). The content of the tutorial was also summarized in
the job instructions.

3. The model verification task where workers identified and
reported defects as part of executing the CrowdFlower
jobs. Each student was randomly assigned to thee jobs.
We applied a cross over design with the 2 student groups
focusing on different parts of Spec, i.e., Scope A and
Scope B. While group 1 focused on Scope A (max. 60
min) followed by Scope B (max. 60 min), group 2 exe-
cuted the same tasks in a reverse order.

4. A defect aggregation and evaluation stage, executed by
the inspection management according to the general pro-
cess and as explained in the “Results” section. The exper-
imental data is stored in a database that allowed automat-
ing the aggregation and parts of the evaluation.

Online questionnaires were used to capture previous ex-
perience of participants and feedback on individual tasks.
Independent variables are the study treatment and material,
e.g., seeded defects of the EER model, defect types, and the
CF organization; dependent variables include precision and
recall of the model verification process.



Table 3: Overview of experimental results.
WS1 WS2 WS3 WS4 WS1-4

Defect Reports 284 568 300 390 1542
Aggregated Defect Reports
Undecided 19 13 32 13 3
NoDefect 78 78 71 80 89
Missing 12 7 8 9 7
Superfluous 3 7 2 3 5
Wrong 2 5 2 1 2(5)
WrongKey 2 3 0 1 2
WrongRelM 4 7 5 13 11
TotalDefects 23 29 17 27 27 (30)
Verified Defect Reports
TruePositives 13 16 9 16 22
FalsePositives 10 13 8 11 8
MatchedTDs 10 12 8 12 14
Precision 57% 55% 53% 59% 73%
Recall 48% 57% 38% 57% 67%

Results
Table 3 sums up the data collected during the experiment
runs over the four individual workshops (W1-W4), as well
as during the entire experiment (W1-4). The first part of the
table displays the number of defect reports (individual judg-
ments) received, showing different numbers per workshop
because the number of participants varied across workshops.

Analysis of aggregated defect reports. The number of
aggregated defect reports is captured in the second half of
Table 3. Workshops with more judgments tend to have less
undecided results, although a clear correlation between the
number of judgments and undecided results cannot be ob-
served. All workshops lead to similar number of defects for
each defect types. As shown in Figure 4, defects of type
Missing and WrongRelM are identified most often, while de-
fects of type WrongKey are the least frequent.

For the defects of type Wrong, often more than one defect
was reported, especially when combining the data across
workshops. For example, for customer, from the 19 judg-
ments received, 6 identified that customer.contactAdress is
missing and 3 suggested that customer.name was a wrong
key. In these cases, we decided to count an individual defect
if it was suggested by at least 3 workers. In WS1-4, we had
one defect covering 2 individual defects and another defect
referring to 3 individual defects. Therefore, in Table 3 we
denote this with 2 (5). The total number of identified defects
ranges between 17 and 30 across workshops.

Quality of the defect set. The total defect sets were eval-
uated with respect to a gold standard of 21 true defects (last
part of Table 3). True positives are defects that could be
mapped to a true defect (i.e., they referred to the same eme
and had the same type). Most of these mappings were ob-
tained automatically and checked manually for correctness.
The rest of the defects were aligned manually to the gold
standard in the following three cases. First, relation multi-
plicity defects were declared for emes of type relation, in-
stead of type relation multiplicity, thus hampering the au-
tomatic mapping. Second, we manually evaluated the de-

Figure 4: Defect types discovered in the workshops.

fects of type Wrong to understand whether they are valid
defects. Third, some defect reports were declared for syn-
onyms of the emes for which a true defect existed in the
Gold standard. For example, true defect D22 specifies that
order.takeout? is Missing. In our output we found this defect
(which was matched automatically), as well as a second de-
fect referring to the synonym order.togo. The second defect
had to be mapped manually to D22. Since in some cases like
this two defect reports were matched to the same true de-
fect, the number of true positives is higher than the number
of matched true defects.

The remaining defects are false positives and fall into the
following three categories. First, there are defect reports that
are obviously wrong, e.g., reporting that an eme depicted
in M is missing. Second, superfluous defects reported cases
when elements were in the model but were not mentioned
in the supporting evidence. We found that all superfluous
defects stem from the fact that the focus model element
was not mentioned in the evidence text, but it appeared in
M . This is therefore a side-effect of the data preparation
process and not a failure of the workers. Having said that,
we consider these cases as false positives with respect to
the gold standard. Third, some of the defect reports rec-
ommended alternative modeling approaches rather than re-
porting defects. E.g., for setMenu.from to we received a de-
fect of type Wrong with workers suggesting splitting this
attribute into two attributes setMenu.from and setMenu.to.
Such cases were also considered false positives with respect
to the gold standard, although they yield interesting sugges-
tions of improved modelling.

Based on the evaluation of the defect reports, we com-
pute precision (proportion of TruePositives in TotalDefects)
and recall (proportion of MatchedTDs over 21 true defects).
Even with the strict decision of counting superfluous and al-
ternative modelings as false positives, the precision of the
defect set ranges from 53% to a maximum of 73% when
combining the data of all workshops. The coverage of the
gold standard ranged from 38% to 67%.

Coverage of true defects. Table 4 depicts which true de-
fects were identified in each workshop. Six of the 21 defects



Table 4: Overview of True Defects identified in workshops.
Defect Type:Missing Defect Type:Wrong Key Defect Type:Wrong Relation Multiplicity

D22 D12 D21 D25 D31 D33 D34 D37 D82 D53 D92 D11 D61 D72 D14 D73 D26 D43 D23 D36 D42
WS1 2 1 1 1 1 1 1 2 1 2
WS2 2 1 1 1 2 1 1 2 1 1 1 1
WS3 2 1 1 1 1 1 1 1
WS4 2 1 1 1 1 2 1 2 1 2 1 1
WS1-4 2 2 1 1 2 1 1 2 1 2 1 2 1 1
Total 10 6 5 5 1 1 1 0 0 7 4 2 0 0 7 6 5 4 4 3 2

were identified in all workshops (4 of type Missing and one
of each of the other two types), while others were identi-
fied only in individual workshops or not at all (D37, D82,
D61, D72). All defects of the type WrongRelM were iden-
tified in at least two workshops, while the identification of
WrongKeys and Missing elements proved more difficult.

The four defects which were not identified in any of the
workshops include D37 which refers to the missing rela-
tion attribute (invoice,invoicedFoodItem,foodItem).number,
and was only considered missing by 1 in 8 judgments. Work-
ers might have been confused here since the entire relation
in missing from the model and therefore reporting a missing
attribute does in fact not make much sense. D82 refers to the
missing entity attribute ingredient.category. This eme was
judged in conjunction with an evidence where it did not ap-
pear, therefore, workers judged it as not relevant and not in
the model, which resulted in a NoDefect judgment. There-
fore, incorrect input data lead to this defect not being iden-
tified. The fact that setMenu.designation and storage.date
were wrong keys (D61, D72), was only identified by 3 in
17 workers (5 times in 16 judgment respectively), probably
because these terms do not appear per se in the specification.

Limitations and Threats to validity. To address internal va-
lidity threats, we did not allow communication between in-
spectors during the study execution. The overall net duration
was limited to 120 min. Individual breaks were allowed with
break periods reported. Prior experience of participants was
captured. We applied a random assignment of participants to
the study groups. The experiment package was intensively
reviewed by experts in pilot studies to identify and fix er-
rors. Further, we executed a set of pilot runs to ensure the
feasibility of the study design. To address external threats
to validity, we selected a well-known application domain, a
restaurant setting. We provided a tutorial to familiarize the
participants with the method and technology.

Conclusions and Future Work
Motivated by the importance of the conceptual model verifi-
cation for the knowledge and software engineering commu-
nities, as well as by the publication of the first approaches
to solve this problem with human computation, in this paper
we aim to generalize this problem across research areas in a
first effort to enable a more concerted work on this topic. To
that end, we propose a first generic formalization of the ver-
ification problem and the VeriCoM approach for solving it
with human computation, with particular focus on splitting
the model verification task and guiding inspectors towards
detecting a-priori defined defect types. We then illustrate the

use of VeriCoM in a software engineering use case, where
we achieve high precision of the defect set (73%) and a re-
call of 67%. We derive the following observations:

• The use of emes for splitting the verification of M
promises to enable a good coverage of the model. Yet,
this has a shortcoming for elements that are in the model
but not in the specification (M \EME), as their verifica-
tion is circumvented (no tasks are created to verify them).
Choosing the intersection of model elements and expected
model elements as basis for task splitting should be inves-
tigated. On a more generic level, if a Spec is not available,
model elements could be used for task splitting.

• The right model element granularity is an open issue.
We observed tendencies of workers to identify errors at
the level of entities and relations rather than more fine-
grained elements, such as attributes and multiplicities. An
open research question therefor refers to the most suitable
element granularity level for human computation.

• The identification of a suitable evidence is crucial. Er-
rors in this task introduced by our manual approach ham-
pered the quality of the final defect set. Automating this
task and experimenting with different approaches to it is
important future work. More generally, for problem in-
stances where a Spec is not available, alternative evidence
sources can be explored (for example, concept definitions
derived from third party resources when verifying ontolo-
gies (Mortensen et al. 2015)).

• Defect type-based guidance of the verification steps is
a good middle ground between providing free-text de-
fect reports that are hard to aggregate or constraining the
choice of workers to binary inputs. Yet, it its current form,
VeriCoM falls short of collecting modelling alternatives
and distinguishing these from defects.

Future work will focus on applying VeriCoM on other
types of models or other problem cases too, e.g., from on-
tology engineering, in order to test and improve its gener-
ality. We also plan to extend VeriCoM to assess worker re-
liability in order to identify potential low-performing work-
ers. Finally, we are interested in investigating how to cap-
ture differences in modelling alternatives between workers
by extending disagreement capturing mechanisms proposed
for other task types (e.g., annotation) (Inel and Aroyo 2017).
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