
A Specification-based State Replication Approach
for Digital Twins

Matthias Eckhart
Christian Doppler Laboratory “SQI”, Inst. of Information

Systems Engineering, TU Wien
Vienna, Austria

matthias.eckhart@tuwien.ac.at

Andreas Ekelhart
SBA Research
Vienna, Austria
JRC TARGET

St. Pölten, Austria
andreas.ekelhart@sba-research.org

ABSTRACT
Digital twins play a key role in realizing the vision of a smart
factory. While this concept is often associated with maintenance,
optimization, and simulation, digital twins can also be leveraged to
enhance the security and safety of cyber-physical systems (CPSs).
In particular, digital twins can run in parallel to a CPS, allowing to
perform a security and safety analysis during operation without
the risk of disrupting live systems. However, replicating states of
physical devices within a CPS in functionally equivalent virtual
replicas, so that they precisely mirror the internal behavior of their
counterparts, is an open research topic. In this paper, we propose a
novel state replication approach that first identifies stimuli based
on the system’s specification and then replicates them in a virtual
environment. We believe that replicating states of CPSs is a prereq-
uisite for a multitude of security and safety enhancing features that
can be implemented on the basis of digital twins. To demonstrate
the feasibility of the specification-based state replication approach,
we provide a prototypical implementation and evaluate it in an
experimental CPS test bed. The results of this paper show that
attacks against CPSs can be successfully detected by leveraging the
proposed state replication approach.

CCS CONCEPTS
• Security andprivacy→ Intrusion detection systems; •Com-
puter systems organization→ Embedded and cyber-physical sys-
tems;

KEYWORDS
Cyber-physical systems; industrial control systems; digital twin;
state replication; intrusion detection systems; AutomationML

1 INTRODUCTION
Cyber-physical systems (CPSs) are characterized by their ability
to perform computations and to interact with the real world [2].
Industrial control systems (ICSs) can be considered as a subset of
CPSs, as they integrate computational elements for the purpose of
industrial process control. Due to the fact that ICSs have a direct
impact on the environment they operate in, ensuring that these
systems meet certain safety requirements is paramount. However,
past incidents [21] have shown that a lack of adequate security
measures may result in disrupted processes, potentially causing
financial damage but also safety risks to personnel and the pub-
lic [27]. As a consequence, CPSs and, in particular, ICSs gained
much attention from security researchers in the past years [15, 20].

In contrast to IT systems, ICSs may consist of components which
have a lifecycle of more than 15 years [19]. Consequently, they may
rely on outdated technology that can often neither be replaced nor
updated. Securing industrial systems is also a challenging endeavor,
since a potential disruption through traditional IT security mea-
sures, e.g., network scanning [6], is typically not acceptable. Based
on these characteristics of ICSs, it is evident that established IT
security principles cannot be directly applied to the operational
technology (OT) domain. Motivated by these challenges, it is a com-
mon requirement for ICS security measures to keep the impact on
live systems as low as possible. This requirement concerns intru-
sion detection, intrusion prevention and, in particular, penetration
testing. However, opting for less invasive or even purely passive
methods and solutions may limit the desired level of security. For
example, a passive monitoring approach does not allow a thorough
inspection of the device, whereas active monitoring may cause a
considerable overhead [23]. Although efforts have been made to
combine active and passive security techniques to compensate the
shortcomings of each other (e.g., [13]), there has been little dis-
cussion about how passive techniques can be further improved,
eventually replacing active ones. For instance, little is known about
how program states of devices can be passively replicated to obtain
an accurate virtual representation of the CPS during its operation.
In the context of this work, such a virtual representation consists
of digital twins1, i.e., virtual replicas of the network and the logic
layer of physical devices, closely matching the physical devices’
behavior on these layers. Due to the fact that these digital twins
run in an isolated virtual environment and thus, are not exposed
to external influences that originate from the real world, a state
replication approach is necessary to keep the states of digital twins
in sync with those of their physical counterparts.

In particular, we identify three use cases based on a state repli-
cation approach that would enhance the security and safety of a
CPS.

First, the CPS can be indirectly analyzed without negatively af-
fecting its operation. In other words, digital twins that maintain
synced states with their physical counterparts, allow the use of
active monitoring techniques on the digital twins, without caus-
ing any risk of interference with live systems, as they run in an
isolated, virtual environment. In fact, the framework for control-
ling the digital twins may even provide an interface that allows

1While in the context of smart manufacturing, the term “digital twin” is more broadly
applied to modeling, simulation and visualization aspects based on various artifacts
and data collected during operation (e.g., [25]), we use it to describe emulated or
simulated devices that may be connected to an emulated network.

a direct retrieval of states, making active monitoring via the net-
work superfluous (cf. [7]). Moreover, such a framework could also
automatically perform checks of security and safety rules (e.g.,
thresholds or consistency checks) that have been defined by users
in advance [7].

Second, the input and output of physical devices can be com-
pared to those of their digital twins for the purpose of intrusion
detection. In essence, this can be considered as a variant of the
behavior-specification-based intrusion detection technique [22, 28],
provided that the CPS’s correct behavior has been defined in a
specification and is then used to generate the virtual replica. The
beauty of this approach is that legitimate behavior of the CPS is
already formulated during the engineering phase, reducing the
configuration effort for such an intrusion detection system (IDS).
During the operation of the CPS, the IDS would take the input
and output of the physical devices and compare them to the input
and output of the corresponding digital twins. The IDS would then
raise an alarm, if differences were detected that indicate malicious
activity. Although the findings by Mitchell and Chen [22] suggest
that behavior-specification-based intrusion detection approaches
generally yield a low false positive rate, the effectiveness of the IDS
could be affected by inaccuracies in the specification of the CPS,
inequalities in the implementation of the digital twins or by state
mismatches.

Third, the data required for state replication could also be stored
in a database for later use. In this way, historical states of digital
twins can be recovered at a later point in time in order to repeat
certain scenarios and analyze them in depth. For instance, this fea-
ture may provide valuable insights into how an infection occurred
or what was the cause of a fault.

The paper at hand attempts to lay the foundation for the de-
scribed use cases by proposing a technique to replicate program
states of devices within a CPS to respective digital twins. To mirror
the state of the physical environment, it is necessary to feed exter-
nal stimuli to the digital twins. In consequence, they should exhibit
the same behavior on the network and logic layer in the virtual
environment. Our approach first identifies stimuli from specifica-
tion that may trigger state transitions. Based on this knowledge,
a variety of data sources (e.g., network traffic, system logs) can
be used to identify concrete stimuli in order to replay them and,
thereby, synchronize the program state between the digital twin
and its physical counterpart.

To demonstrate the feasibility of our state replication approach,
we extend the digital-twin frameworkCPS Twinning proposed in [7].
This framework generates digital twins based on the specification
of CPSs, defined in AutomationML (AML) [5] artifacts. The physi-
cal connections and logical interactions between devices are also
modeled to fully mirror the cyber-physical environment. Eckhart
and Ekelhart [7] provide a proof of concept, including a prototype,
that demonstrates how digital twins can be generated from spec-
ification and run independently from the physical environment.
Yet, a replication mode in which they mirror the state of physical
devices is missing. This paper aims to fill this gap.

We summarize the contributions of this work as follows:

‚ We propose a specification-based state replication approach
for digital twins.

‚ We prove the feasibility of the proposed state replication
approach by providing a proof-of-concept implementation
named CPS State Replication.

‚ We evaluate the prototype in an ICS test bed by first measur-
ing the state replication accuracy and then demonstrating
how the concept of state replication can be leveraged to
detect attacks against ICS.

The remainder of this paper has four sections. First, in Section 2,
we cover related work in the context of state replication and in-
trusion detection. In Section 3, we formulate the proposed state
replication approach. Section 4 presents the proof of concept and
evaluates the implemented prototype. Finally, Section 5 concludes
the paper and provides suggestions for future research directions.

2 RELATEDWORK
Related work can be divided into the following categories: (i) state
observers, (ii) state machine replication, (iii) state-based & pro-
cess-aware intrusion detection, and (iv) physics-based state-aware
intrusion detection.

State Observers. State observers can be used to estimate the state
vector of a system based on observations of its inputs and out-
puts [18]. Although conceptually related to the field of control
theory, our aim is not to estimate the systems’ state vector, but
rather to replicate the program states of systems to their virtual
replicas. More precisely, we are not attempting to estimate the state
of a system based on a mathematical model that describes its dy-
namics. Instead, our state replication approach feeds specific inputs
to a digital twin that executes a functionally equivalent copy of the
program running on the corresponding physical device. In further
consequence, we can retrieve the digital twin’s values of program
variables with the expectation to receive an accurate representation
of the variables that reside on the real, physical device.

State Machine Replication. Another related concept, yet associ-
ated with the research area of distributed computing and applied
with a different objective, is state machine replication. In essence,
state machine replication can be used to achieve fault tolerance
in distributed systems, namely by first replicating services for the
purpose of redundancy and then ensuring that the states of these
services are kept in sync [26]. To reach an agreement among the ser-
vices so that commands can be processed in a coordinated manner,
consensus algorithms, such as Paxos [16], are used. Although state
machine replication and the state replication approach presented in
this paper share similar characteristics (e.g., requiring determinism),
the key difference lies in the fact that both aim to solve different
problems and, therefore, cannot be used interchangeably. In state
machine replication, multiple replicas of one state machine must
be coordinated, ensuring that every non-faulty one receives every
request [26]. Instead, our proposed approach attempts to identify
and replay only inputs that emanate from sources external to the
virtual environment in order to to keep the state of digital twins
in sync with their physical counterparts. Furthermore, due to the
fact that only one digital twin is generated in the virtual environ-
ment for each device and physical traits are simulated, the state
replication approach does not improve the CPS’s fault tolerance. In

2

other words, if a device of the CPS fails, the respective digital twin
cannot take over to prevent an interruption of processes.

State-based & Process-aware Intrusion Detection. As mentioned
in Section 1, the rationale for replicating states to digital twins is to
maintain a current virtual representation of physical devices that
can then be used for security relevant use cases, such as intrusion
detection. The notion of tracking the states of an ICS for the purpose
of intrusion detection is not new. Several studies investigated how
the sequence of system states can be virtually represented in order
to detect malicious inputs, i.e., inputs that would cause the system
to transition into a critical state [3, 10, 12].

In [10], the authors present an architecture of a state-based IDS
that records the system state in “system virtual images” to iden-
tify malicious network requests. System virtual images are virtual
representations of programmable logic controllers (PLCs) and re-
mote terminal units (RTUs), including their memory registers, coils,
inputs and outputs. To keep track of state transitions in a timely
manner, an active monitoring approach has been implemented. Fur-
thermore, they propose a language for specifying a rule set that
is used by the IDS, allowing users to define malicious packets and
critical states of systems. The approach proposed in [3] extends the
work conducted by [10], as it examines historical states in order
to determine a tendency towards a critical state. The prediction of
critical states is achieved by leveraging distance metrics that indi-
cate how far the monitored states and the defined critical states are
apart from each other. Similar to [10], the IDS proposed by Carcano
et al. [3] uses active monitoring to keep the states of the virtual
representation in sync with the real system. Contrary to [3, 10],
the IDS presented by Hadžiosmanović et al. [12] favors passive
monitoring and is also able to interpret the semantics of PLC vari-
ables, enabling the derivation of behavioral models. Autoregressive
modeling and control limits form the basis of the data modeling
technique that is used in [12] to detect malicious activity.

Other, more recent works, such as [4, 24], propose process-aware
intrusion detection techniques that focus specifically on states of
the physical process, rather than mere system states. For instance,
Nivethan and Papa [24] extend the work of Fovino et al. [10], as
their IDS is able to interpret rules that have been formulated by
process engineers. In this way, high-level constraints for process
states can be specified by individuals who have expert knowledge
about the physical process, which are then mapped by the IDS to
corresponding system states.

In contrast to our approach, the IDSs presented in [3, 10, 12,
24] do not base their detection mechanisms on virtual replicas
of the ICS, consisting of an emulated network layer and either
emulated or simulated components (digital twins). Instead, they
actively or passively retrieve the values of PLC variables in order
to monitor the state of industrial processes. Moreover, the method
for detecting intrusions also differs. While they rely on rules that
define critical states [3, 4, 10, 24] or use statistical methods [12]
to predict abnormal conditions of the process under control, we
use certain features (e.g., inputs) to perform a comparison between
the virtual replica of the ICS (generated from specification, thereby
defining legitimate behavior) and its physical counterpart.

Physics-based State-aware Intrusion Detection. In recent years, a
number of papers have been published which examine how physical

models of a system can be leveraged to uncover intrusions [29]. For
example, Urbina et al. [30] evaluate the effectiveness of a stateful
detection method, which is based on the cumulative sum (CUSUM)
algorithm to take historical changes of states into account. In [11],
the authors present an improved version of the stateful intrusion
detection approach [30] that enhances the CUSUM computation by
adding a state-dependent parameter; thus, making it “state-aware”.

Although the integration of a device’s physical model into the
corresponding digital twin for the purpose of detecting intrusions
is worth researching, our work focuses on monitoring the program
states in conjunction with network traffic.

3 STATE REPLICATION
Before discussing the proposed method, it is essential to clarify
what constitutes a “state” of a device and how the term “replication”
is used in this context. In this work, a deterministic program, P ,
denotes a finite-state machine (FSM), which is defined by a tuple
P B pX ,x0,U ,Y ,δ , λq where X B tx0,x1, . . . ,xn´1u is the finite
set of states, x0 P X is the initial state, U B tu0,u1, . . . ,uk´1u is
the finite set of inputs, Y B ty0,y1, . . . ,ym´1u is the finite set of
outputs, δ : XˆU Ñ X is the transition function and λ : XˆU Ñ Y
is the output function.

Furthermore, we expect that each digital twin runs a program
P̂ that is functionally identical to the one running on its physical
counterpart P , such that P “ P̂ . Thus, δpx ,uq “ δ̂px̂ , ûq ô x 1 “ x̂ 1,
provided that px “ x̂q ^ pu “ ûq (where x is the current state, and
x 1 the next state of a physical device; likewise, x̂ is the current state,
and x̂ 1 the next state of the device’s digital twin).

Recall that an ICS consists of a variety of physical devices which
may be represented as digital twins in the virtual environment.
Each device can have an input u P U and an output y P Y . Thus,
U Ă U˚ and Y Ă Y˚, where U˚ and Y˚ is the set of inputs and
outputs of all devices, respectively. Moreover, we define the set of
stimuli, S , representing the roots of subsequent inputs, correspond-
ing to one digital twin (i.e., stimuli emanation outside the modeled
environment, such as sensor values or commands from an HMI), as
follows:

S B t z P Û | z P U ^ z R Y˚ u

where Û is the set of inputs of a digital twin. In particular, S Ă Û
and, Û may contain elements of Ŷ˚ as well as inputs that emanate
from users interacting with the digital twin.

The term replication, on the other hand, describes the process of
repeating the same stimulus, s P S , from the physical environment
on a digital twin, so that it leads to an identical program state
(x “ x̂). If any members of S would not satisfy the right operand
of the logical conjunction z P U ^ z R Y˚, then the digital twin
may receive the same input twice. The reason for this result is that
if such a stimulus is erroneously replicated, then the digital twin
receives the stimulus in addition to an input that actually has been
a prior output, since each digital twin should produce ŷ P Ŷ (where
Ŷ represents the set of a digital twin’s outputs) by itself.

It is also worth mentioning that the period between two succes-
sive stimuli observed in the physical environment and the period
between these two stimuli being fed to the respective digital twin

3

Output

Virtual
Env.

Physical
Env.

Digital Twin
Digital Twin

Digital Twin

P ̂ x ̂

Intrusion Detection System

Device
Device

Device

P x

u ̂

s

u y

y ̂

Figure 1: Structure of the state replication approach

in the virtual environment must be equal, to expect an identical
state.

3.1 Drawbacks of Active Monitoring
At first sight, the obvious solution to capture x would be an active
monitoring approach, i.e., continuously polling for changes of the
state. However, this way of state replication has several disadvan-
tages. First of all, actively monitoring each device in the physical
environment via the network would incur a significant increase in
network traffic and potentially disrupt real-time communication
within industrial networks. Second, active monitoring may not only
affect the performance on a network level, but also on devices them-
selves. This downside is particularly critical for legacy systems, as
they are still prevalent in industrial environments and typically
limited in computational resources. Third, an attacker could tamper
the response of a poll request in order to hide the real program
state, x . In this way, a security and safety analysis based on the
states of digital twins could be circumvented and, as a consequence,
malicious activity would remain undetected.

Due to the aforementioned negative effects of using an active
monitoring technique for the purpose of replicating states to digital
twins, a passive approach will be proposed.

3.2 A Passive State Replication Approach
In a purely passive setting, the trigger of a state transition must be
tracked down in order to understand whichu constitutes a stimulus
so that it can be fed to the transition function of the digital twin,
δ̂px̂ , sq. Since the proposed state replication approach should not
add any overhead to the network, nor to devices themselves, the
identification of stimuli must exclusively rely on sources that are
already available due to the architecture of the CPS, enabling a
purely passive operation. These sources can be diverse, ranging
from the passive monitoring of network traffic to log files.

As Figure 1 illustrates, the devices which are located within the
physical environment (i.e., CPS), receive an inputu that may trigger
a state transition, such that δpx ,uq “ x 1. For instance, a PLC could
receive an input via its analog-, digital- or network interface that
may cause a transition into the next state x 1, as defined by the
control logic. Since u must be considered as a determining factor
that drives x 1, u could be directly fed to the PLC’s digital twin
(u “ û), leading to δ̂px̂ , ûq “ x̂ 1, provided that u “ s . This can
be exemplified by considering a PLC that is used to control the
liquid level in a tank. The PLC is connected to a liquid level sensor
(input), as well as a valve (output), for the purpose of maintaining
a specific liquid level inside the tank. In addition, it is important
to note that only the PLC exists in the virtual environment as a
digital twin. In this setup, S “ U of the PLC, due to the fact that the
sensor measurements represent the root of inputs and the liquid
level sensor is not part of the virtual environment. Although u is
governed by y, as the valve influences the liquid level, the data that
is coming from sensor readings constitute external influences. As
a result, the input, u, received by the physical PLC can be directly
replicated within the virtual environment to reach x 1 “ x̂ 1.

However, replicating states of CPSs that are more complex may
lead to two issues. First, detecting inputs without proper sensors
in place, such as user actions, may be limited. Second, if s cannot
be correctly distinguished from u, a state mismatch (x ‰ x̂) may
occur. For instance, an input u that is a consequence of a prior state
transition should have been produced by the respective digital twin
on its own. Hence, replicating u would only duplicate the input and
potentially lead to a state mismatch. However, differentiating be-
tween s and u may be challenging, since there can be long chains of
state transitions that increase complexity, especially when multiple
devices are involved.

To overcome these challenges, we propose to utilize the specifi-
cation of the CPS in order to identify stimuli. First, the specification
of the CPS will be parsed to define the partial function f , i.e., the
mapping of stimuli indices, I , to stimuli of all digital twins, S˚. Let
f : U˚ YY˚ Û S˚ be a partial function, then I is defined as follows:

I B t j P U˚ Y Y˚ | f pjq P S˚ u.

Next, j P U˚ Y Y˚ will be observed and checked whether j P I .
Since j P I ô f pjqÓ, meaning that j is a member of I if and
only if f pjq is defined, s P S˚, the value of f of j, is fed to the
respective digital twin, provided that j is indeed in the set of I .
Hence, δ̂px̂ , sq “ x̂ 1.

Example. A packaging line is managed by a human machine
interface (HMI) that communicates with a PLC via Modbus TCP/IP
in order to control a conveyor belt. The characteristics of these de-
vices, including their programs, and the physical as well as logical
network have been specified in an AML-based engineering artifact.
As discussed in [7], the virtual environment along with digital twins
can be automatically generated based on the data extracted from this
specification. Furthermore, external influences can be inferred by
examining the associated role of components. Based on the role defi-
nition of theHMI, i.e., AutomationMLExtendedRoleClassLib/HMI,
it is evident that this component receives inputs from users. Due to
the fact that user actions represent the roots of subsequent state
transitions, this external influence qualifies as a stimulus, s P S ,

4

for the digital twin of the HMI. However, an input of the HMI,
u P U , cannot be directly observed without effort, as no method
that would record human input (e.g., camera, data logging) has been
set up beforehand. Nevertheless, a user input generates an output
in the form of a Modbus request, making x indirectly observable by
passively monitoring the network traffic in order to capture outputs
of the HMI. Next, the partial mapping (f) must be created based
on the specified logical network (cf. Listing 1) in two steps. First,
InternalElement elements (Listing 1, starting at line 2) within the
logical network are extracted for the purpose of classifying inputs
and outputs, as they declare how devices communicate, including
details concerning the used network protocol (e.g., Modbus func-
tion code). Second, InternalLink elements (Listing 1, line 11) are
resolved to identify source and destination of packets, and which
program variable(s) they may affect. Finally, if an output of the
HMI,y, has been classified as an outcome of a stimulus (y P I), f pyq

is defined, meaning that s can be inferred from y by evaluating
function f . In further consequence, s is replicated in the virtual
environment.

1 <InternalElement Name="LogicalNetwork" ID="c51...">

2 <InternalElement Name="ModbusRequests" ID="ce1...">

3 <InternalElement Name="StartConveyorBeltModbusReadRequest"

ID="0e5...">ãÑ

4 <Attribute Name="functionCode"

AttributeDataType="xs:integer">ãÑ

5 <Value>3</Value>

6 </Attribute>

7 <Attribute Name="startingAddress"

AttributeDataType="xs:integer">ãÑ

8 <Value>0</Value>

9 </Attribute>

10 ...

11 <InternalLink Name="HMI1 StartConveyorBelt - PLC1 Modbus

400001" RefPartnerSideA="{068...}:StartConveyorBelt"

RefPartnerSideB="{29b...}:1" />

ãÑ

ãÑ

12 <RoleRequirements

RefBaseRoleClassPath="/ModbusReadHoldingRegisters"

/>

ãÑ

ãÑ

13 </InternalElement>

14 ...

Listing 1: Excerpt of the logical network specification

It is also worthmentioning thatu may not constitute an input em-
anating from sources that are external to the device (e.g., incoming
network packet), but rather from the control logic itself (e.g., trig-
gered by a timer instruction). However, in this case we still expect
x “ x̂ , provided that P “ P̂ , i.e., the digital twin and its physical
counterpart execute a functionally identical version of the program
and both have the same initial state. However, achieving s0 “ ŝ0
represents a key challenge in implementing the proposed approach
in a real-world setting, since program states in live systems cannot
be arbitrarily altered or reset.

4 PROOF OF CONCEPT
In this section, we present a proof of concept of the proposed state
replication approach. First, we introduce the test bed and evalua-
tion scenario. After that, we describe the architecture, followed by
the presentation of the proof-of-concept implementation and the
evaluation results.

4.1 Scenario
To evaluate the implemented state replication approach, we built
an experimental ICS test bed that represents a fraction of a candy
production line. In particular, our ICS aims to improve efficiency in
quality control activities, as selected candies can be removed from
the conveyor in an automated manner, for the purpose of manual
inspection.

Figure 2 depicts the architecture of the ICS test bed. In general,
the architecture can be divided into three layers, viz., (i) the physical
process (level 0), (ii) basic control and connectivity (level 1), and
(iii) supervisory control and IT/OT services (level 2). Since we
wanted to examine whether state replication is also feasible when
more recent technology is involved, we designed the ICS in line
with key principles of a smart factory, emanating from the vision
of Industry 4.0 [14].

In the scenario process at hand, the goods are transported on
Conveyor Belt 1. PLC 1, a Siemens SIMATIC S7-1200 PLC, con-
trols Motor 1, a stepper motor that drives the conveyor belt. HMI 1
communicates with the PLC via Modbus TCP/IP, allowing users
to set the state (start/stop) and the velocity of the conveyor belt.
Furthermore, each candy carries an RFID tag, enabling the identifi-
cation of the candy’s type (e.g., mint flavor). If RFID Reader 1, an
ESP8266, reads a tag, the type of the candy is transmitted wirelessly
via Access Point 1 to MQTT Broker 1 in order to publish it on
the MQTT candy topic. As IIoT Gateway 1 is subscribed to this
topic, the type of the detected candy is received by the gateway
via MQTT and then sent via Modbus TCP/IP to PLC 1. If the PLC
receives such a Modbus request, the type of the detected candy is
saved in memory. Besides allowing users to control the conveyor
belt by interacting with HMI 1, they can also select a type of candy
that should be removed from the conveyor belt. If a candy type has
been selected, a Modbus TCP/IP request is sent to PLC 1, which
then saves the user’s selection in memory. If the detected and se-
lected candy — both stored in memory of PLC 1—match, the candy
ejection takes place in two steps. First, the PLC controls Motor 1 in
a way that it moves the candy to an absolute position, ensuring that
it is within reach of the pusher. Then, the PLC activates the pusher
by starting Motor 2 in order to eject the candy. After the candy has
been successfully removed from the conveyor belt, PLC 1 resets
the variable that is used to store the user’s selection.

As mentioned in Section 3.2, the input u and output y of a physi-
cal device is passively monitored to identify stimuli indices, I . In
this scenario, we use the log output of RFID Reader 1 and the
network traffic between HMI 1 and PLC 1 as sources for the stimuli
indices identification.

4.2 Architecture
As shown in Figure 3, the overall architecture can be divided into
the digital-twin framework CPS Twinning [7] and its replication

5

PLC 1

Motor 2

Switch 1

Motor 1

IIoT Gateway 1

M
Q
TT

MQTT Broker 1 HMI 1

Level 0

Access Point 1

1 2
3 4

RFID Reader 1
Level 1

Level 2

Conveyor Belt 1

LOG

Traffic

Figure 2: Test bed used for evaluation

mode, named CPS State Replication. In the following subsections,
each component of CPS State Replication will be explained in detail.

4.2.1 Data Sources. As the inputs,U , and outputs, Y , of a physical
device must be retrieved in a passive manner, pre-existing data
sources such as (i) system logs, (ii) network traffic, and (iii) sensor
measurements can be used. Depending on the nature of the physical
device, relying only on one data source for obtaining stimuli may be
insufficient. In this case, combiningmultiple data sources is required.
However, if multiple data sources are used in conjunction and
the sets of recorded inputs or outputs overlap, duplicates must be
filtered out before the data is passed onto the ingestion component.

4.2.2 Ingestion. The ingestion component is in charge of taking
unstructured data that originated from the physical or virtual envi-
ronment, transforming it into a consistent format and then trans-
mitting the output of the transformation process to the collection
component. The ingestion of data (i.e., members ofU˚, Y˚, Û˚ and
Ŷ˚, where Û˚ and Ŷ˚ represent the inputs and outputs of all digital
twins, respectively) is supported in two ways: offline and online. In
offline mode, the ingestion is performed in a static manner, signi-
fying that inputs and outputs are processed file-based. In contrast,
online ingestion refers to the continuous processing of streamed
data. Thus, online ingestion is the preferred mode for consistently
maintaining synced states with the physical environment. On the
other hand, the offline mode may facilitate the execution of tests
performed in the virtual environment, as the same states can be
replicated to digital twins any number of times.

It is also worth highlighting that the ingestion is performed in
a decentralized manner, allowing to balance the load of incoming
data.

4.2.3 Collection. This component consists of a distributed mes-
saging system that transports data between the ingestion, stimuli-
processing and intrusion detection component. In addition, the
collection component transfers the identified stimuli to CPS Twin-
ning in order to replay them in the virtual environment.

Upon receiving data from the ingestion component, the trans-
mitted messages are categorized based on the type of data source
(e.g., network traffic) and the environment they originated from

(e.g., physical environment). Besides incoming messages from the
ingestion component, stimuli and intrusion detection results are
also collected accordingly, ensuring that they are distributed to
respective consumers.

4.2.4 Specification & Parser. The specification of the CPS repre-
sents a key component in CPS Twinning and is reused for the
identification of stimuli in CPS State Replication. Ideally, the spec-
ification has been created in the course of the engineering phase
and is then maintained throughout the CPS’s lifecycle. In the pro-
posed specification-based state replication approach, the stimuli
identification is performed based on topological data, meaning
that engineering artifacts must precisely describe the hierarchy
and properties of the plant’s components. Since the engineering
data format AutomationML (AML) [5] is specifically designed to
model the plant’s structure, it is the data format of choice for state
replication.

The parser transforms the specification of the CPS to S˚, I , f and
passes them onto the stimuli-processing component. As discussed
in Section 3.2, building the sets S˚ and I is achieved by interpreting
the characteristics of physical devices and by analyzing the spec-
ified data flows, defined in the logical network. One way to infer
the characteristics of a device (e.g., receives user input, transmits
sensor readings) is by interpreting its role definition. For instance,
in AML, instances (e.g., a concrete HMI) can be associated with
roles by using the RoleRequirements element. On the other hand,
the data flows can be defined by using the notion of a logical net-
work (cf. Listing 1), i.e., a model of the network that considers OSI
layers 3–7 [1]. Each element of the logical network (e.g., request)
is then analyzed based on the device’s characteristics in order to
determine whether it represents an indication of a stimulus, i P I .
If the element of the logical network can indeed be represented as
a member of I , the corresponding stimulus is constructed. The con-
struction of the stimulus is determined by the set membership of i .
In particular, if i P U˚ is true, then i can be replicated in the virtual
environment as it is (i “ s , where s P S˚). However, if i P Y˚ is
true, then the stimulus must be created from scratch, for example
by making appropriate calls to the digital-twin framework’s API.
As a result, the sets S˚ and I can be built based on the inferred
device characteristics and the data flows. The partial function f
is computed in consequence of the set building, as it maps stimuli
indices to stimuli.

4.2.5 Stimuli Processing. The stimuli-processing component re-
ceives inputs and outputs of devices from the collection component
and checks for each incoming message, j P U˚ YY˚, whether j P I .
If j is indeed a member of I , then f pjqÓ and the partial function f of
j evaluates to s P S˚. The output of f pjq, i.e., the stimulus, is then
transmitted to CPS Twinning through the collection component in
order to replicate it in the virtual environment.

4.2.6 Intrusion Detection. Assuming that the specification of the
CPS precisely describes the correct behavior and each digital twin
follows the state of its physical counterpart, a divergence between
the physical and virtual environment should be detectable. Based on
this assumption, comparing the inputs and outputs of the physical
environment with those of the virtual one may reveal either device
faults or malicious activity. Supplementary, the states of digital

6

CPS State Replication

Offline

Online

Data Sources

CPS Twinning

Digital Twin

Logic

Core

Generator

Parser

Topology

Virtual Environment

Modes

Modules

CLI
Commands

Si
m
ul
at
io
n

Re
pl
ic
at
io
n

Visualization

Analytics

Intrusion
Detection

Penetration
Testing

System Testing History

Collection

Physical Environment

Specification

Storage

LOG

System Logs Network Traffic Sensor Measurements

InputAML

Network
Interface(s)

Digital Twin

Logic Network
Interface(s)

Digital Twin

Logic Network
Interface(s)

Ingestion Parser

Intrusion DetectionStimuli Processing

Specification

Input AML

Figure 3: Architecture of CPS Twinning [7] and CPS State Replication

twins can also be factored into the comparison in order to consider
physical process states. Thus, the intrusion detection component
processes elements of the setsU˚, Y˚, Û˚, Ŷ˚ and X̂˚, where X̂˚

is the set of states of all digital twins.
The comparison between p P U˚ Y Y˚ and v P Û˚ Y Ŷ˚

relies on predefined features. To give an example, Modbus TCP/IP
network traffic from the physical and virtual environment could
be compared based on (i) source & destination MAC addresses,
(ii) source & destination IP addresses, and (iii) Modbus TCP/IPADUs.
If the comparison based on the selected features yields a mismatch,
the IDS raises an alarm to alert users of potential intrusions. It is
also worth mentioning that the selection of features significantly
impacts the intrusion detection performance (e.g., false positive
rate), as some characteristics of p and v may vary. This could be
caused, for example, by differences in the implementation (e.g.,
network stack) of physical devices and digital twins [7].

The beauty of this intrusion detection approach is that it enables
automatic in-depth checks of the CPS during operation that reveal
whether the behavior of the CPS conforms to the defined legiti-
mate behavior, without causing any risks of interference with live
systems.

However, we also identified two drawbacks that are inherent
to our approach. First, it must be ensured that the specification
indeed describes the correct behavior of the CPS. In particular, if en-
gineering artifacts have been modified with malicious intent before
they are passed onto the generation step done by the digital-twin
framework, then the comparison would be to no avail. As a result,
the mitigation of insider threats and the protection of the engineer-
ing process is of utmost importance. Second, if the digital twins
receive malicious inputs to which they are similarly vulnerable as
their physical counterparts, the comparison used for intrusion de-
tection would not yield any differences. However, this risk may be
mitigated by continuously performing safety and security checks
on digital twins based on additional rules defined in the specifica-
tion [7] or by employing dynamic malware analysis techniques [8].
Since the execution of digital twins can be thoroughly analyzed

without negatively affecting the operation of live systems, both
mitigation strategies are applicable.

The main limitation of this approach is that we rely on the
assumption that the digital twins model the correct behavior and
that we can passively obtain the genuine inputs of the real devices.

4.2.7 Storage. The storage component consists of one or multiple
databases that are used to store the input (i.e., elements of the sets
U˚, Y˚, Û˚, Ŷ˚) and output (i.e., elements of the set S˚) of the
stimuli-processing component as well as intrusion detection logs.
Persisting stimuli would enable users to recover historical states of
digital twins and resume the digital twins’ execution in simulation
mode. In this way, the behavior of digital twins can be thoroughly
analyzed over time. Such a “history” feature would also allow users
to test security measures in an isolated environment, yet with states
that the real CPS had in the past. Additionally, the stored data could
be used for other non-security related applications (e.g., analytics).

4.3 Implementation
To evaluate how the proposed state replication approach can be
realized in practice, we implemented all components of CPS State
Replication (cf. Section 4.2), except the storage component, as we
leave the “history” use case for future work.

The source code of CPS State Replication2 and CPS Twinning3
is available on GitHub.

4.3.1 CPS Twinning. As already mentioned, we used CPS Twin-
ning [7] as a basis, since it already supports the generation and exe-
cution of digital twins in a virtual environment. CPS Twinning uses
Mininet [17] to emulate the network layer [7]. However, Mininet
does not yet support the virtualization of wireless networks, mean-
ing that we cannot use it to generate the digital twins for wireless
devices, viz., RFID Reader 1 and Access Point 1 (cf. Section 4.1).
SinceMininet does not fit our needs, we adoptedMininet-WiFi [9], a
fork of Mininet that allows the virtualization of stations and access
points.
2https://github.com/sbaresearch/cps-state-replication
3https://github.com/sbaresearch/cps-twinning

7

https://github.com/sbaresearch/cps-state-replication
https://github.com/sbaresearch/cps-twinning

Furthermore, we seamlessly integrated our replication mode into
the framework in order to ensure that individuals can use it via the
command-line interface (CLI) as any other module. Yet, we aimed
to design the replication mode in CPS Twinning as lightweight as
possible. The reason for this design choice is to reduce the stimuli-
processing load on the digital-twin framework by running CPS State
Replication as a self-contained application, ideally in a distributed
manner. As a result, we implemented only the stimuli retrieval from
the collection component and the algorithm to replicate them in
the virtual environment in CPS Twinning. The replication mode in
CPS Twinning was implemented in Python.

When users activate the replication mode by issuing the com-
mand start_replication via the CLI in CPS Twinning, two threads
are started, one for enqueueing retrieved stimuli and one for repli-
cating the dequeued stimuli in the virtual environment. The actual
algorithm implemented in CPS Twinning that is used for stimuli
replication can be seen in Algorithm 1. The stimuli replication algo-
rithm has two inputs: (i) a Boolean value to define the exit condition
for a state mismatch, and (ii) a minimum priority queue to retrieve
stimuli for replication. Since we use the timestamp of occurrence of
each stimulus as a priority number, the oldest stimuli are retrieved
first. If no stimulus has been replicated yet, the conditional expres-
sion in line 5 of Algorithm 1 is true, leading to the instantaneous
replication of the first incoming stimulus. However, before the ac-
tual method for replicating the stimulus is called, the timestamp of
the stimulus is stored in a variable (cf. Algorithm 1, line 7). For any
subsequent stimuli, the statements in the else branch, starting in
line 11 of Algorithm 1, are executed.

Recall that the timespan between the replication of two succes-
sive stimuli must equal to the timespan between these two stimuli
observed in the physical environment (cf. Section 3). We attempt
to fulfill this requirement by calculating the timespan for which
the execution of the thread must be suspended in order to repli-
cate the stimulus in due time. It is worth highlighting that for the
calculation of the sleep time (cf. Algorithm 1, line 16), we always
use the timestamp when the initial stimulus was replicated, instead
of the timestamp when the most recent one was replicated. The
reason for this lies in the fact that the point in time at which the
stimulus is replicated should always match the point in time at
which it had been observed in the physical environment, whilst
taking the inevitable delay into account that is caused by CPS State
Replication when replicating the first stimulus.

Due to the distributed nature of CPS State Replication, we can-
not rely on a strict ordering of streamed stimuli. For example, the
thread, which is used for receiving stimuli from the collection com-
ponent, may enqueue a stimulus that has an older timestamp than
the one that currently awaits replication. In this case, the current
stimulus replication must be prematurely interrupted by resuming
the execution of the algorithm, enqueuing the stimulus again and
skipping the actual replication (cf. Algorithm 1, line 19–21).

4.3.2 CPS State Replication. The actual implementation of the in-
gestion, collection and stimuli-processing component heavily relies
on open-source software. In fact, the ingestion and collection com-
ponent were realized by leveraging the ready-made tools Apache
Flume and Apache Kafka, respectively. Consequently, there was

Algorithm 1: Stimuli replication algorithm in CPS Twinning
Input: A Boolean bailOut , a minimum priority queue pq

1 s0 Ð NULL // first replicated stimulus

2 t0 Ð 0 // timestamp of first replicated stimulus

3 si´1 Ð NULL // last replicated stimulus

4 while state replication mode is active do
5 if s0 “ NULL then
6 s0 Ð Dequeue(pq)

// may block until stimulus is available

7 t0 Ð GetTimestamp()

8 ReplicateStimulus(s0)

9 si´1 Ð s0

10 else
11 si Ð Dequeue(pq)

// may block until stimulus is available

12 ∆si´1 Ð GetTimestamp(si) ´ GetTimestamp(si´1)

13 if ∆si´1 ă 0 and bailOut “ true then
14 break // state mismatch

15 ∆s0 Ð GetTimestamp(si) ´ GetTimestamp(s0)

16 tsleep Ð pt0 ` ∆s0q ´ GetTimestamp()

17 if tsleep ą 0 then
18 f Ð Sleep(tsleep)

// true, if wake up was forced

19 if f “ true then
20 Enqueue(pq, si)

21 continue

22 else if tsleep ă 0 then
// state replication delay of tsleep ˚ ´1

23 ReplicateStimulus(si)

24 si´1 Ð si

more work involved in configuring both platforms, than actual pro-
gramming effort. Yet, the parser, stimuli processing and intrusion
detection components were implemented based on Apache Spark
in Scala.

Data Sources, Ingestion & Collection. As already discussed in
Section 4.1, we use the log output of the RFID Reader 1 as well
as the network traffic between PLC 1 and HMI 1 as data sources
for state replication. When the RFID reader detects a candy, the
candy’s type (e.g., cherry) is printed to the serial port. To ingest
these log messages, we implemented a Python program that reads
the messages via the RFID reader’s serial port and publishes them to
a Kafka topic. On the other hand, the network traffic is first captured
by use of tshark and then ingested through a Kafka sink in Flume.
To implement the offline and online mode of this ingestion instance,
we configured two sources in Flume. For the offline mode, we set
up a spooling directory that ingests tshark captures in the form of
JSON files. In contrast, the online mode was realized by configuring
a source of type exec, which allows to specify a Unix command
(in our case tshark) that is executed on start-up of Flume. It is also
worth mentioning that we implemented a Flume interceptor that

8

adds the device’s or digital twin’s identifier to the header of Kafka
messages in order to perform semantic partitioning of network
traffic data. In this way, multiple instances of the stimuli-processing
component can consume Kafka messages in parallel.

Besides the log messages of the RFID reader and the network
traffic between the PLC and the HMI, we also use the output of
a sensor, which detects ejected candies, and the network traffic
between the RFID reader and the MQTT broker as data sources.
Although both data sources serve no purpose for state replication,
they significantly enhance our intrusion detection approach (cf. Sec-
tion 4.4.2). While the candy sensor provides valuable details about
the candy ejection process (i.e., time of ejection, candy’s type), the
network traffic between RFID Reader 1 and MQTT Broker 1 may
reveal attacks that targeted the detection of candies.

The candy sensor relies on a video stream to detect candies based
on the color of their wrapping. The program used to process the
video stream was implemented in Python with OpenCV.

Parser, Stimuli Processing & Intrusion Detection. The parser tra-
verses the instance hierarchy defined in the AML file and extracts
the data required to build f , i.e., a data structure that maps stimuli
indices (consisting of specific inputs and outputs) to stimuli. Sim-
ilar to [7], the AML parser has been specifically designed for the
scenario at hand (cf. Section 4.1). Consequently, any modifications
to the scenario and, in further consequence, to the specification,
may require adaptations to the AML parser.

After parsing the specification, a streaming client is instantiated
that subscribes to the Kafka topics used for stimuli processing
and intrusion detection. When the Spark application receives new
messages from Kafka, the incoming dataset is split into subsets
by filtering based on the messages’ topic. After the streamed data
has been partitioned, only the two datasets (network traffic and
system logs) that contain messages, which originated from the
physical environment, are used for stimuli processing. By contrast,
the datasets, which contain network traffic, system logs and sensor
measurements for both the phyiscal and virtual environment, are
passed onto the intrusion detection system. Owing to the concept
of resilient distributed datasets (RDDs) [31] that is implemented in
Spark, the stimuli processing and the intrusion detection is executed
in parallel.

The stimuli processing was implemented as follows: In the first
step, the messages of the two datasets are unmarshalled into in-
stances of Scala classes, which have been modeled according to
the types of inputs and outputs (e.g., Modbus TCP/IP packet). Next,
each input and output object is used to determine whether the
partial map (i.e., f) transforms it to a stimulus. Finally, the retrieved
stimuli are marshalled and then published to the corresponding
Kafka topic.

As already mentioned, the intrusion detection system processes
messages from all subscribed Kafka topics. Yet, we limited the com-
parison between the physical and virtual environment to MQTT
publish requests and candy sensor measurements. Although the pro-
posed intrusion detection technique would enable a more compre-
hensive comparison, we wanted to measure the intrusion detection
performance with a minimal amount of features used. In partic-
ular, we selected (i) the source/destination MAC address, (ii) the
source/destination IP address, (iii) the MQTT header flags, (iv) the

MQTT payload, and (v) the detected candy type (coming from the
candy sensor) as features for the comparison. In case of detected
differences between the physical and virtual environment, the com-
pared data, which was captured from the physical environment, is
logged to the console in order to warn users.

4.3.3 Known Limitations. The presented prototype has several lim-
itations that result from differences between the implemented logic
layer of digital twins and those of physical devices. Since we use
CPS Twinning for the generation of digital twins, the extended ver-
sion of the digital-twin framework suffers from the same drawbacks
as those reported by Eckhart and Ekelhart [7]. For instance, we had
to port parts of the program running on PLC 1 to structured text
(ST). In particular, vendor-specific blocks (e.g., motor control) were
mocked in ST. In addition, we had to set the scan time of PLC 1 to
50 ms, due to performance issues.

4.4 Evaluation
We aim to evaluate the prototype and the proposed state replica-
tion approach by performing two types of experiments. In the first
type of experiments, we try to determine the accuracy of the state
replication approach, which is measured by the time differences be-
tween state transitions of the physical and virtual environment. The
second type of experiments aim to demonstrate the effectiveness
of the intrusion detection system.

4.4.1 State Replication Accuracy. To determine the time differences
between the state transitions of a physical device and those of
its digital twin, we configured a logger on the physical device
and implemented a “state logging” module in CPS Twinning. In
particular, we added a logger function block to the program running
on PLC 1 that logs all program variables every 100 ms to a CSV file.
On the other hand, when activating the “state logging” module of
CPS Twinning, the state transitions of all digital twins are captured.
In this way, we were able to track the sequence of states and the
timestamp of state transitions for both the digital twin and its
physical counterpart.

Two experiments based on the scenario discussed in Section 4.1
were conducted. Although both experiments were performed with
the same ICS test bed, they are completely independent from each
other, meaning that the sequence of stimuli (i.e., inputs of the HMI
and RFID reader) varies. Figure 4a and 4b each depict two timelines,
showing how the values of program variables of the physical PLC
and its digital twin change over the course of time. In both figures,
the stimuli are marked with asterisks. It is also worth mentioning
that the candy types are internally mapped to integers — namely,
the value 1 indicates a candy with the flavor cherry and the value 2 a
mint-flavored candy. Furthermore, the colored segments only show
the elapsed time until any variable change occurred. As a result,
there are stimuli marked on both timelines of Figure 4a and 4b that
do not change any variables’ value. For example, in Figure 4a, the
18th and 19th stimulus represents an input that originated from the
RFID reader, detecting a candy with the flavor mint. Since a candy
with the same flavor has been detected before (16th stimulus), the
variable’s value does not change.

In the first experiment (cf. Figure 4a), 24 stimuli were replicated in
total. The timespan between the first observed/replicated stimulus

9

S
T
A

R
T

C
O

N
V

E
Y

O
R

B
E

LT
=

T
ru

e

C
O

N
V

E
Y

O
R

V
E

L
O

C
IT

Y
=

2
0

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

2

S
E

L
E

C
T

E
D

C
A

N
D

Y
=

1

E
X

T
R

A
C

T
O

R
R

U
N

N
IN

G
=

T
ru

e
E

X
T

R
A

C
T

O
R

R
U

N
N

IN
G

=
F

a
ls

e

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

2

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

1

S
E

L
E

C
T

E
D

C
A

N
D

Y
=

2

E
X

T
R

A
C

T
O

R
R

U
N

N
IN

G
=

T
ru

e
E

X
T

R
A

C
T

O
R

R
U

N
N

IN
G

=
F

a
ls

e

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

1

S
E

L
E

C
T

E
D

C
A

N
D

Y
=

2

E
X

T
R

A
C

T
O

R
R

U
N

N
IN

G
=

T
ru

e
E

X
T

R
A

C
T

O
R

R
U

N
N

IN
G

=
F

a
ls

e

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

1

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

2

S
E

L
E

C
T

E
D

C
A

N
D

Y
=

1

E
X

T
R

A
C

T
O

R
R

U
N

N
IN

G
=

T
ru

e
E

X
T

R
A

C
T

O
R

R
U

N
N

IN
G

=
F

a
ls

e

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

2

S
E

L
E

C
T

E
D

C
A

N
D

Y
=

1

E
X

T
R

A
C

T
O

R
R

U
N

N
IN

G
=

T
ru

e
E

X
T

R
A

C
T

O
R

R
U

N
N

IN
G

=
F

a
ls

e

S
T

O
P

C
O

N
V

E
Y

O
R

B
E

LT
=

T
ru

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Digital Twin

Physical Device

0 50000 100000 150000 200000

Time (ms)

(a) Experiment 1

S
T
A

R
T

C
O

N
V

E
Y

O
R

B
E

LT
=

T
ru

e

C
O

N
V

E
Y

O
R

V
E

L
O

C
IT

Y
=

1
8

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

2

S
E

L
E

C
T

E
D

C
A

N
D

Y
=

1

C
O

N
V

E
Y

O
R

V
E

L
O

C
IT

Y
=

2
1

E
X

T
R

A
C

T
O

R
R

U
N

N
IN

G
=

T
ru

e
E

X
T

R
A

C
T

O
R

R
U

N
N

IN
G

=
F

a
ls

e

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

2

S
T

O
P

C
O

N
V

E
Y

O
R

B
E

LT
=

T
ru

e

S
T

O
P

C
O

N
V

E
Y

O
R

B
E

LT
=

F
a

ls
e

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

1

S
E

L
E

C
T

E
D

C
A

N
D

Y
=

2

E
X

T
R

A
C

T
O

R
R

U
N

N
IN

G
=

T
ru

e
E

X
T

R
A

C
T

O
R

R
U

N
N

IN
G

=
F

a
ls

e

D
E

T
E

C
T

E
D

C
A

N
D

Y
=

1

S
T

O
P

C
O

N
V

E
Y

O
R

B
E

LT
=

T
ru

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17Digital Twin

Physical Device

0 50000 100000 150000

Time (ms)

(b) Experiment 2

Figure 4: Sequences of changes of PLC program variables from the first (a) and second (b) experiment4

and the first variable change is 3ms in the physical environment and
220 ms in the virtual. The state replication delay, i.e., the timespan
between the first observed stimulus in the physical environment
and the first replicated stimulus in the virtual environment, was
11.701 seconds. Furthermore, we measured the differences between
the intervals of a program variable change on the physical device
and its digital twin. The first quartile is 22 ms, the median is 98 ms,
and the third quartile is 149 ms. The minimum and maximum
interval deviations are 2 ms and 1789 ms, respectively.

As can be seen in Figure 4b, 17 stimuli were replicated in the
second experiment. In this experiment, the timespan between the
first stimulus and the first variable change amounts to 114 ms in
the physical and 207 ms in the virtual environment. Furthermore,
the state replication delay measured in the second experiment is
10.8 seconds. In the second experiment, wemeasured slightly higher
deviations between the intervals of a program variable change on
the physical device and the corresponding digital twin than in the
first experiment. In this run, the first quartile is 63ms, the median is
114ms, and the third quartile is 198ms. Moreover, the minimum and
maximum interval deviations are 4 ms and 1521 ms, respectively.

It is worth pointing out that certain intervals between changes
to the digital twin’s program variables were shorter than the re-
spective intervals measured on the physical device. Due to a lack

4Those DETECTEDCANDY labels that precede EXTRACTORRUNNING=True have been omit-
ted for the sake of clarity.

of a physical model of the pusher, we mocked the block that con-
trols the motor of the pusher with a timer on delay (TON) in-
struction and hard coded a value of 1961 ms for the timer (cf. Sec-
tion 4.3.3). Since this value represents the average timespan between
EXTRACTORRUNNING=True and EXTRACTORRUNNING=False (i.e., the
pusher is active) of only 5 runs, this part of the digital twin’s pro-
gram inherently introduces inaccuracies. Interestingly, when repli-
cating the third stimulus in the first and second experiment (cf. Fig-
ure 4a and 4b), we measured a considerable difference of 1517 ms
and 1521 ms, respectively, between the program variable change
(DETECTEDCANDY=2) observed on the physical device and its digital
twin. Although it is not entirely clear from the data that we ob-
tained what caused the delay, we assume that the initial connection
to MQTT Broker 1 or IIoT Gateway 1 in the virtual environment
consumes more time than any connections that were subsequently
established.

In both experiments, CPS Twinning and CPS State Replication
were executed on a single machine. Accordingly, we we would ex-
pect a decrease in the state replication delay, if CPS State Replication
is deployed to a multi-node cluster.

4.4.2 Detection of Attacks. We evaluated the effectiveness of the
intrusion detection system by testing it against two types attacks:
(i) a man-in-the-middle (MITM) attack, and (ii) an insider attack.
Both attacks targeted the candy ejection process, i.e., ejecting a
candy with a different flavor than selected by the user.

10

1 14:04:55.178 - Count [pCandy=1,vCandy=1].
2 +------+
3 | candy|
4 +------+
5 |Cherry|
6 +------+
7 14:06:06.392 - Count [pMQTT=8,vMQTT=1].
8 +---------+---------+------------+------------+------------+------------+--------+-----------+--------+----------+--------+
9 | eth.src| eth.dst| ip.src| ip.dst|mqtt.msgtype|mqtt.dupflag|mqtt.qos|mqtt.retain|mqtt.len|mqtt.topic|mqtt.msg|
10 +---------+- -------+------------+------------+------------+------------+--------+-----------+--------+----------+--------+
11 |08:00:...|f8:1e:...|192.168.0.61|192.168.0.32| 3| 0| 0| 0| 11| candy| Mint|
12 ...
13 |08:00:...|f8:1e:...|192.168.0.61|192.168.0.32| 3| 0| 0| 0| 11| candy| Mint|
14 +---------+---------+------------+------------+------------+------------+--------+-----------+--------+----------+--------+

Listing 2: Output of the IDS for attack 1

MITM Attack. For the MITM attack, our aim was to position the
attacker between RFID Reader 1 and MQTT Broker 1 by launch-
ing an ARP spoofing attack. When the RFID reader detects a candy,
the attacker intercepts the MQTT publish packet, changes the de-
tected candy type in the packet’s payload and sends it to the MQTT
broker. In further consequence, the forged candy type is transmitted
to the PLC, leading to the ejection of a wrong candy.

In this attack scenario, the user selects the flavor mint via the
HMI in order to remove such a candy from the conveyor belt. Then,
the RFID reader detects a candy of type cherry and attempts to
transmit this data via MQTT to the MQTT broker. Yet, the attacker
— as the man in the middle — intercepts the communication and
changes the type of the detected candy to mint. As the variable
values in the PLC program for the detected and selected candy
match, the wrong candy with the flavor cherry is ejected.

Due to the fact that the IDS relies on the network traffic between
the RFID reader and the MQTT broker as well as on the candy
sensor log output, the attack has left its traces in both data sources.
Besides the varying detected candy type, the amount of MQTT
publish packets observed in the physical environment differs from
that observed in the virtual environment. As can be seen from the
output of the IDS depicted in Listing 2, eight MQTT publish packets
were observed in the physical environment (cf. line 7, packet count
for the physical and virtual environment is denoted by pMQTT and
vMQTT, respectively), due to retransmissions caused by the ARP
spoofing attack. In contrast, only one MQTT publish packet was
captured in the virtual environment.

Insider Attack. The second attack emanates from an insider. An
engineer modifies the ejection logic in the PLC program with mali-
cious intents and transfers it to the device via a memory card. Thus,
the attacker leaves no traces in the network traffic.

This time, the user selects the flavor cherry on the HMI. After the
selection, the RFID reader detects a candy of type cherry. However,
the candy ejection process has not been initiated by the PLC, due
to malicious changes in the PLC logic. Instead, upon detecting a
mint-flavored candy, the ejection is executed. Since the attacker
was not able to adapt the specification of the PLC accordingly, the
PLC digital twin still reflects the correct behavior. Thus, the correct
candy (i.e., a candy of type cherry) is ejected virtually, leading to the
discovery of the intrusion. Listing 3 shows that both the physical

and virtual candy sensor detected one candy (denoted by pCandy
and vCandy, respectively), yet the output of the real, physical candy
sensor indicates that a mint-flavored candy was ejected, instead
one with a cherry flavor.

1 15:07:21.065 - Count [pCandy=1,vCandy=1].

2 +-----+

3 |candy|

4 +-----+

5 | Mint|

6 +-----+

Listing 3: Output of the IDS for attack 2

5 CONCLUSIONS
In this paper, we have presented an approach to replicate program
states from physical devices to their digital twins. State transitions
of physical devices can be detected by passively monitoring their
inputs and outputs. Based on these passive data sources and the
system’s specification, we deduce stimuli and replicate them in
a virtual environment. Since the digital twins execute equivalent
versions of the programs running on their physical counterparts,
we expect them to exhibit an identical behavior. The digital twins
enable a detailed inspection of otherwise hidden states and, fur-
thermore, highlight deviations by comparing them to the behavior
of their real, physical counterparts.

While the results of this work are promising, there are still some
challenges to be addressed to improve the state replication approach.
For example, depending on the nature of the device or caused by
inaccuracies of the specification, inferring the device’s character-
istics based on the role definition may be infeasible. In this case,
users are required to either add details about stimuli or explicitly
label inputs as stimuli. Another possible option, yet more complex
to implement, may be to develop a code analyzer that automatically
inspects all programs, which are referenced in a CPS’s specifica-
tion, for the purpose of stimuli identification. Furthermore, as our
approach focuses only on states of software programs, support for
replicating stimuli that manifest themselves in the form of analog
signals is lacking. Thus, analog values that constitute stimuli must

11

be converted to a binary representation, before they can be repli-
cated in the virtual environment. However, considering that CPSs
typically consist of analog-intensive components, further research
in this area is worth pursuing.

ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry for Digital,
Business and Enterprise and the National Foundation for Research,
Technology and Development, and COMET K1, FFG - Austrian Re-
search Promotion Agency is gratefully acknowledged. Furthermore,
this work was supported by the Austrian Science Fund (FWF) and
netidee SCIENCE under grant P30437-N31.

REFERENCES
[1] AutomationML. 2014. Whitepaper: Communication. Technical Report V_1.0.0.

AutomationML consortium.
[2] Radhakisan Baheti and Helen Gill. 2011. Cyber-physical systems. The impact of

control technology 12 (2011), 161–166.
[3] A. Carcano, A. Coletta, M. Guglielmi, M. Masera, I. Nai Fovino, and A. Trombetta.

2011. A Multidimensional Critical State Analysis for Detecting Intrusions in
SCADA Systems. IEEE Transactions on Industrial Informatics 7, 2 (May 2011),
179–186. https://doi.org/10.1109/TII.2010.2099234

[4] Justyna Joanna Chromik, Anne Katharina Ingrid Remke, and Boudewijn R.H.M.
Haverkort. 2016. What’s under the hood? Improving SCADA security with process
awareness. IEEE. https://doi.org/10.1109/CPSRSG.2016.7684100

[5] R. Drath, A. Luder, J. Peschke, and L. Hundt. 2008. AutomationML - the glue
for seamless automation engineering. In 2008 IEEE International Conference on
Emerging Technologies and Factory Automation. 616–623. https://doi.org/10.1109/
ETFA.2008.4638461

[6] David Duggan, Michael Berg, John Dillinger, and Jason Stamp. 2005. Penetration
testing of industrial control systems. Sandia National Laboratories (2005).

[7] Matthias Eckhart and Andreas Ekelhart. 2018. Towards Security-Aware Virtual
Environments for Digital Twins. In Proceedings of the 4th ACM Workshop on
Cyber-Physical System Security (CPSS ’18). ACM, New York, NY, USA, 61–72.
https://doi.org/10.1145/3198458.3198464

[8] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2008. A
Survey on Automated Dynamic Malware-analysis Techniques and Tools. ACM
Comput. Surv. 44, 2, Article 6 (March 2008), 42 pages. https://doi.org/10.1145/
2089125.2089126

[9] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and C. E. Rothenberg.
2015. Mininet-WiFi: Emulating software-defined wireless networks. In 2015 11th
International Conference on Network and Service Management (CNSM). 384–389.
https://doi.org/10.1109/CNSM.2015.7367387

[10] I. N. Fovino, A. Carcano, T. D. L. Murel, A. Trombetta, and M. Masera. 2010.
Modbus/DNP3 State-Based Intrusion Detection System. In 2010 24th IEEE Interna-
tional Conference on Advanced Information Networking and Applications. 729–736.
https://doi.org/10.1109/AINA.2010.86

[11] Hamid Reza Ghaeini, Daniele Antonioli, Ferdinand Brasser, Ahmad-Reza Sadeghi,
and Nils Ole Tippenhauer. 2018. State-Aware Anomaly Detection for Industrial
Control Systems. In The 33rd ACM/SIGAPP Symposium On Applied Computing
(SAC). https://doi.org/10.1145/3167132.3167305

[12] Dina Hadžiosmanović, Robin Sommer, Emmanuele Zambon, and Pieter H. Har-
tel. 2014. Through the Eye of the PLC: Semantic Security Monitoring for In-
dustrial Processes. In Proceedings of the 30th Annual Computer Security Appli-
cations Conference (ACSAC ’14). ACM, New York, NY, USA, 126–135. https:
//doi.org/10.1145/2664243.2664277

[13] William Jardine, Sylvain Frey, Benjamin Green, and Awais Rashid. 2016. SENAMI:
Selective Non-Invasive Active Monitoring for ICS Intrusion Detection. In Pro-
ceedings of the 2nd ACMWorkshop on Cyber-Physical Systems Security and Privacy
(CPS-SPC ’16). ACM, New York, NY, USA, 23–34. https://doi.org/10.1145/2994487.
2994496

[14] Henning Kagermann, Wolfgang Wahlster, and Johannes Helbig. 2013. Recom-
mendations for Implementing the Strategic Initiative INDUSTRIE 4.0 – Securing
the Future of German Manufacturing Industry. Final Report of the Industrie
4.0 Working Group. acatech – National Academy of Science and Engineering,
München.

[15] M. Krotofil and D. Gollmann. 2013. Industrial control systems security: What is
happening?. In 2013 11th IEEE International Conference on Industrial Informatics
(INDIN). 670–675. https://doi.org/10.1109/INDIN.2013.6622964

[16] Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. Comput. Syst. 16, 2
(May 1998), 133–169. https://doi.org/10.1145/279227.279229

[17] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:
Rapid Prototyping for Software-defined Networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks (Hotnets-IX). ACM, New York,
NY, USA, Article 19, 6 pages. https://doi.org/10.1145/1868447.1868466

[18] D. G. Luenberger. 1964. Observing the State of a Linear System. IEEE Transactions
on Military Electronics 8, 2 (April 1964), 74–80. https://doi.org/10.1109/TME.1964.
4323124

[19] T. Macaulay and B.L. Singer. 2016. Cybersecurity for Industrial Control Systems:
SCADA, DCS, PLC, HMI, and SIS. CRC Press.

[20] S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A. R. Sadeghi, M. Maniatakos,
and R. Karri. 2016. The Cybersecurity Landscape in Industrial Control Systems.
Proc. IEEE 104, 5 (May 2016), 1039–1057. https://doi.org/10.1109/JPROC.2015.
2512235

[21] Bill Miller and Dale Rowe. 2012. A Survey of SCADA and Critical Infrastructure
Incidents. In Proceedings of the 1st Annual Conference on Research in Information
Technology (RIIT ’12). ACM, New York, NY, USA, 51–56. https://doi.org/10.1145/
2380790.2380805

[22] Robert Mitchell and Ing-Ray Chen. 2014. A Survey of Intrusion Detection Tech-
niques for Cyber-physical Systems. ACM Comput. Surv. 46, 4, Article 55 (March
2014), 29 pages. https://doi.org/10.1145/2542049

[23] Andrew Nicholson, Helge Janicke, and Antonio Cau. 2014. Position Paper: Safety
and Security Monitoring in ICS/SCADA Systems. In Proceedings of the 2nd In-
ternational Symposium on ICS & SCADA Cyber Security Research 2014 (ICS-CSR
2014). BCS, UK, 61–66. https://doi.org/10.14236/ewic/ics-csr2014.9

[24] Jeyasingam Nivethan and Mauricio Papa. 2016. A SCADA Intrusion Detection
Framework That Incorporates Process Semantics. In Proceedings of the 11th
Annual Cyber and Information Security Research Conference (CISRC ’16). ACM,
New York, NY, USA, Article 6, 5 pages. https://doi.org/10.1145/2897795.2897814

[25] Roland Rosen, Georg von Wichert, George Lo, and Kurt D. Bettenhausen. 2015.
About The Importance of Autonomy and Digital Twins for the Future of Man-
ufacturing. IFAC-PapersOnLine 48, 3 (2015), 567 – 572. https://doi.org/10.1016/
j.ifacol.2015.06.141 15th IFAC Symposium onInformation Control Problems
inManufacturing.

[26] Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–319.
https://doi.org/10.1145/98163.98167

[27] Jill Slay and Michael Miller. 2008. Lessons Learned from the Maroochy Water
Breach. In Critical Infrastructure Protection, Eric Goetz and Sujeet Shenoi (Eds.).
Springer US, Boston, MA, 73–82.

[28] Prem Uppuluri and R. Sekar. 2001. Experiences with Specification-Based Intrusion
Detection. Springer Berlin Heidelberg, Berlin, Heidelberg, 172–189. https://doi.
org/10.1007/3-540-45474-8_11

[29] David I. Urbina, Jairo Giraldo, Alvaro A Cardenas, Junia Valente, Mustafa Faisal,
Nils Ole Tippenhauer, Justin Ruths, Richard Candell, and Henrik Sandberg. 2016.
Survey and new directions for physics-based attack detection in control systems.
Technical Report. NIST. https://doi.org/10.6028/nist.gcr.16-010

[30] David I. Urbina, Jairo A. Giraldo, Alvaro A. Cardenas, Nils Ole Tippenhauer, Junia
Valente, Mustafa Faisal, Justin Ruths, Richard Candell, and Henrik Sandberg.
2016. Limiting the Impact of Stealthy Attacks on Industrial Control Systems. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). ACM, New York, NY, USA, 1092–1105. https://doi.org/10.1145/
2976749.2978388

[31] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA,
2–2.

12

https://doi.org/10.1109/TII.2010.2099234
https://doi.org/10.1109/CPSRSG.2016.7684100
https://doi.org/10.1109/ETFA.2008.4638461
https://doi.org/10.1109/ETFA.2008.4638461
https://doi.org/10.1145/3198458.3198464
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1109/CNSM.2015.7367387
https://doi.org/10.1109/AINA.2010.86
https://doi.org/10.1145/3167132.3167305
https://doi.org/10.1145/2664243.2664277
https://doi.org/10.1145/2664243.2664277
https://doi.org/10.1145/2994487.2994496
https://doi.org/10.1145/2994487.2994496
https://doi.org/10.1109/INDIN.2013.6622964
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/TME.1964.4323124
https://doi.org/10.1109/TME.1964.4323124
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1145/2380790.2380805
https://doi.org/10.1145/2380790.2380805
https://doi.org/10.1145/2542049
https://doi.org/10.14236/ewic/ics-csr2014.9
https://doi.org/10.1145/2897795.2897814
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1145/98163.98167
https://doi.org/10.1007/3-540-45474-8_11
https://doi.org/10.1007/3-540-45474-8_11
https://doi.org/10.6028/nist.gcr.16-010
https://doi.org/10.1145/2976749.2978388
https://doi.org/10.1145/2976749.2978388

	Abstract
	1 Introduction
	2 Related Work
	3 State Replication
	3.1 Drawbacks of Active Monitoring
	3.2 A Passive State Replication Approach

	4 Proof of Concept
	4.1 Scenario
	4.2 Architecture
	4.3 Implementation
	4.4 Evaluation

	5 Conclusions
	Acknowledgments
	References

