
CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

1

Investigating a Distributed and Scalable

Model Review Process

Dietmar Winkler

Christian Doppler Laboratory for Security and Quality Improvement in the Production System

Lifecycle, Vienna University of Technology, Institute of Information Systems Engineering,

Information & Software Engineering,

Vienna, Austria

dietmar.winkler@tuwien.ac.at

Marcos Kalinowski

Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Informatics,

Rio de Janeiro, Brazil

kalinowski@inf.puc-rio.br

Marta Sabou, Sanja Petrovic, Stefan Biffl

Vienna University of Technology, Institute of Information Systems Engineering, Information &

Software Engineering,

Vienna, Austria

<firstname>.<lastname>@tuwien.ac.at

Abstract

[Context] Models play an important role in Software and Systems Engineering processes.

Reviews are well-established methods for model quality assurance that support early and

efficient defect detection. However, traditional document-based review processes have

limitations with respect to the number of experts, resources, and the document size that can be

applied. [Objective] In this paper, we introduce a distributed and scalable review process for

model quality assurance to (a) improve defect detection effectiveness and (b) to increase

review artifact coverage. [Method] We introduce the novel concept of Expected Model

Elements (EMEs) as a key concept for defect detection. EMEs can be used to drive the review

process. We adapt a best-practice review process to distinguish (a) between the identification

of EMEs in the reference document and (b) the use of EMEs to detect defects in the model.

We design and evaluate the adapted review process with a crowdsourcing tool in a feasibility

study. [Results] The study results show the feasibility of the adapted review process. Further,

the study showed that inspectors using the adapted review process achieved results for defect

detection effectiveness, which are comparable to the performance of inspectors using a

traditional inspection process, and better defect detection efficiency. Moreover, from a

practical perspective the adapted review process can be used to complement inspection efforts

conducted using the traditional inspection process, enhancing the overall defect detection

effectiveness. [Conclusions] Although the study shows promising results of the novel process,

future investigations should consider larger and more diverse review artifacts and the effect of

using limited and different scopes of artifact coverage for individual inspectors.

 Keywords: Review, Inspection, Models, Model Quality Assurance, Crowdsourcing, Feasibility

Study, Controlled Experiment.

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

 1 Introduction

Software reviews represent important tasks in Software Engineering to identify defects in engineering artifacts early,

effectively, and efficiently [3]. Formal reviews, such as software inspections [2], support software reviews for

various types of engineering artifacts, e.g., written text documents, architecture diagrams, and code. The early

verification of software engineering artifacts, such as software models, prior to the construction of software code is

of particular relevance for database design, software architecture, and the definition of success-critical test cases.

Software model reviews typically require checking whether a conceptual model correctly and completely represents

the content of suitable reference documents, such as systems specifications [2]. Example models include the

Extended Entity Relationship (EER) diagrams or UML models to model software structures and behaviour.

Reviews for model verification face several challenges [13] regarding (a) required resources, (b) limited

guidance through the review process, (c) limited document coverage for large engineering artifacts, and (d) limited

tool support, as detailed next. Traditional software reviews require the availability of experts for participation in the

defect detection process and team meetings. Limited availability and considerable cost make review processes

challenging. Further, the typical duration of efficient reviews is limited to two hours. Thus, only a subset of the

review artefact can be inspected within this time interval which limits the coverage of large and complex

engineering models. Although guidelines (such as reading techniques [15]) can support the review process, it is still

challenging to review large artifacts, assuring coverage and addressing the most critical system parts. Typical review

and inspection processes are based on Pen & Paper (P&P) with limited tool support that hinders coordinated reviews

of software models in teams [16].

To face these challenges, we pioneer exploring how software model verification can be improved with Human

Computation and Crowdsourcing (HC&C) methods. HC&C reduced the duration and cost of tasks that cannot be

reliably automated, in fields as diverse as Natural Language Processing (NLP) [11], databases, or image analysis

[12]. Since software model verification strongly relies on human cognitive skills, it is a good candidate for being

addressed with HC&C methods. HC&C techniques rely on splitting large and complex problems into multiple,

small and easy tasks solvable by an average contributor in a suitable population and then coordinating the collection

and aggregation of individual micro-contributions into a larger result. Therefore, benefits for model quality

assurance may include an increased coverage of large review artifacts by better coordination in the review team and

accelerate the review process for large materials by parallelizing and distributing tasks with suitable resources.

Furthermore, HC&C specific tools can provide coordination tool support.

The novel methodology idea has been to investigate the use of HC&C methods for software model quality

assurance and model verification both at process and tool levels [17]. First, at process (guideline) level, we propose

an adapted review process for Crowdsourcing-based Software Inspection (CSI) to achieve faster reviews of large

models by repurposing traditional software review process. Second, at a tool support level, we explore the feasibility

of implementing key review tasks within the CrowdFlower1 crowdsourcing platform to perform model verification

with experts. We evaluate the proposed review process and tool support in a feasibility study, comparing it to

traditional P&P based inspections [18].

In this paper we extend our previous publication [18] by providing a more detailed view on the CSI review

process, on the feasibility study design and on its results. Furthermore, we also investigate whether the two

approaches (CSI and traditional P&P) can complement themselves by analysing the individual defects found by

each approach. The study results show the feasibility of the adapted review process and that inspectors using the

adapted process achieved comparable results for defect detection effectiveness and better defect detection efficiency.

Our findings also indicate that the adapted review process can be used to complement traditional inspection efforts

(e.g., for critical software), enhancing the overall defect detection effectiveness by finding additional defects.

The remainder of this paper is structured as follows. Section 2 presents related work on software reviews and

inspections, and crowdsourcing. Section 3 presents our key research issues. In Section 4 we describe the adapted

software review process with crowdsourcing. Next, we describe the controlled experiment in Section 5 and the

preliminary results in Section 6. In Section 7 the results are discussed based on general process observations and

practical implications to industry practitioners. Finally, Section 8 concludes this paper and summarizes future work.

 2 Background and Related Work

In this section, we describe related work on Software Reviews and Inspections (Section 2.1) and Crowdsourcing in

Software Engineering (Section 2.2).

1 CrowdFlower: www.crowdflower.com

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

 2.1 Software Reviews and Inspections

Software Reviews and Inspections are well-established and formal defect detection approaches that enable efficient

defect detection already in early software development phases, e.g., during software design [2]. Traditional review

and inspection processes enable defect detection with focus on different types of artifacts, e.g., text documents,

graphical representations of models, or software code.

Figure 1 illustrates the traditional inspection process [5]. It consists of five main steps: (1) Inspection Planning,

where a moderator prepares the review package, including reference documents (e.g., requirements specifications),

inspection artifacts (e.g., software models), and supporting guidelines; (2) Individual Defect Detection by review

team members to identify defects in review artifacts according to the reference documents and by applying

guidelines; (3) during a Team Meeting the inspection team generates an aggregated team defect list; (4) Rework by

the author focuses on the improvement of engineering artifacts based on identified defects; and (5) Closure of the

review process.

Inspection
Planning

Individual Defect
Detection

Inspection
Closure

Inspection
Team Members

RefDoc

Model
Scope

Preparation
Defect

Detection

Rework
Team

Meeting

Defect
Aggregation

Follow-Up

Reference
Documents

Review Artifacts
(e.g. models)

Moderator

Indiv.
Defect
Report

Team
Defect
Report

Inspection
Team Members

Moderator ModeratorAuthor

1 2 3 4 5

Author

Figure 1: Traditional software inspection process [5]

Traditional software reviews and inspections are time-consuming and involve expensive experts. The overall

effort for a typical inspection process depends on team size and the size of the review artifacts. Beyond preparation,

coordination, and closure effort of the moderator, main effort driver focuses on individual defect detection and team

meetings. Typically, two-hours are recommended for individual defect detection and team meetings. These time

limits are particularly challenging for large software models and reference documents.

To address high effort for inspection, tool support can help to reduce effort and improve coordination of

activities and results. While tool support exists for code reviews, it is limited for inspecting models and design

documents. For instance, CodeSurfer2 focuses on a fine-grained software inspection approach for software code [1].

Lessons learned from code review tools in open source development projects [13] report that commercial and open

source tools, such as Gerrit3, provide a web-based code review tool complemented by repository management

solutions, such as GIT4. However, these approaches do not support inspection for non-software-code artifacts, such

as design specifications or software models. Defect detection in non-software-code artifacts has been typically

performed with Pen-and-Paper (P&P) [1]. Office suites, word processors, and spreadsheet solutions can support the

management of individual findings but suffer from limitations regarding inspector coordination. Groupware tools,

such as GoogleDocs5, can facilitate and improve inspector collaboration compared to offline office suites [3]. Some

tool support has been proposed to support overall inspection process coordination. For instance, the web-based tools

presented in [6] and [7] allow reducing inspection meeting effort by supporting a slightly modified inspection

process that replaces the face to face meetings with asynchronous discussions. However, those tools do not support

scoping during inspection planning for handling large artifacts.

For software model reviews, moderators and reviewers/inspectors require (a) appropriate scoping to enable

efficient and effective defect detection for large-scale software artifacts and critical system parts; (b) systematic

method support for defect detection, validation of defects, and coordination of inspection activities as these tasks are

typically executed manually; and (c) guidelines for defect detection, such as reading techniques for model

inspection.

 2.2 Crowdsourcing in Software Engineering

Crowdsourcing has gained strong interest in Software Engineering (SE) and may provide promising solutions for

some review and inspection issues, e.g., improved coordination (of inspection team members, tasks, and results),

2 CodeSurfer: www.grammatech.com/products/codesurfer
3 Gerrit Code Review: www.gerritcodereview.com
4 GIT: git-scm.com
5 Google Docs: docs.google.com

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

reduction of cognitive fatigue (by removing redundant work and reusing intermediate results from previous steps),

increased coverage (as some parts of large artifacts might not be covered with traditional, weakly-coordinated

approaches), more diversity (support for dealing with various inspection artifacts and access to a wider variety of

inspectors), and accelerated inspection processes (by parallelization of small tasks and access to more inspectors).

Therefore, we aim to explore: (a) how Human Computation and Crowdsourcing (HC&C) methods can be used to

inspect SE models and (b) whether HC&C methods can lead to better model inspection by distributing and

coordinating work in an inspection team.

The notion of distributed development of software projects by large, undefined groups of contributors has been

practiced in the SE community for decades, most notably within open source projects. The advent of mechanized

labor (microtasking) platforms such as Amazon Mechanical Turk6 or CrowdFlower1, have fuelled an intensified

interest in the application of crowdsourcing techniques in SE, leading to the emergence of a new research area

dubbed Crowdsourced Software Engineering (CSE) and recently defined as “the act of undertaking any external

software engineering tasks by an undefined, potentially large group of online workers in an open call format” [8][9].

LaToza [8] distilled three different models of CSE (i.e., peer production, competitions, microtasking),

depending on differentiating factors such as the contributing crowd’s size (e.g., small, large), the expected time

needed to solve of each (micro)task (e.g., minutes, days), the expertise required from contributors, the incentive

mechanisms used (intrinsic, extrinsic), the interdependence between tasks, or the context needed for solving each

task (none to extensive). In peer production models, such as those underlying open source projects, intrinsically

motivated contributors (i.e., volunteers), cooperate to solve diverse interdependent tasks of a larger problem that

might take several hours of weeks to solve and require an extensive understanding of the project context for being

solved. Competitions style models, such as those adopted by the popular TopCoder7 CSE platform, adopt a radically

different approach: instead of collaboratively solving parts of a problem they elicit alternative solutions to the same

problem, out of which only the most suitable solutions are selected and eventually paid for. Design related tasks

where choosing from various alternatives are desired, are particularly suitable for this model. Lastly, in microtasking

models, a problem is split in several, self-contained tasks, solvable in a matter of minutes by extrinsically-motivated

participants with minimal expertise. This model requires a problem decomposition that leads to tasks with low

interdependence and solvable with a minimal knowledge of the problem-context, thus being the most scalable

thanks to the potential of intense parallelization of these task executions.

CSE approaches corresponding to the models above have been used to solve a diversity of problems from

various stages of the software development life cycle [9]. In the Planning and Analysis phase, problems, such as

requirements acquisition, extraction and categorization are often crowdsourced. The problems from the Design

phase have attracted less approaches, with only a few papers attempting crowdsourced user interface and

architecture design. Substantial reports focus on crowdsourcing Implementation phase specific tasks such a coding

and debugging. Problems that were crowdsourced from the Testing phase include usability, performance and GUI

testing. Within the Maintenance phase, crowdsourcing was used for software adaptation, documentation and

localization among others. However, despite this diverse adoption with an intense focus on software testing and

verification through crowdsourcing, employing HC&C for software model inspection has not been addressed neither

in research [9] nor in practice. For example, leading software crowdsourcing platforms such as TopCoder7 do not

support software model verification. Our research aims to fill this gap.

 3 Study Goal and Research Questions

To address the need for supporting model quality assurance, in particular model inspection, and to improve

shortcomings embodied within traditional review and inspection processes, we see high potentials for introducing

HC&C methods to reduce inspection resources, improve guidance for the review process, improve coordination, and

to increase inspection coverage. From these expectations we derived a set of research questions:

 RQ.1 How can we extend a traditional software inspection process to enable the application of HC&C

methods? Main goal is to present the designed extended inspection process that takes into consideration

benefits of crowdsourcing (e.g., microtasking and coordination).

 RQ.2 What are the effects of the CSI approach with focus on (a) defect detection performance, i.e., defect

detection effectiveness and efficiency? We analysed the adapted inspection approach, i.e., crowdsourcing-

based inspection (CSI) in comparison to a traditional P&P inspection process executing a feasibility study

(controlled experiment) to investigate defect detection performance.

6 Mechanical Turk: www.mturk.com
7 TopCoder: www.topcoder.com

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

 RQ.3 Are the CSI approach and traditional P&P inspection processes complimentary with respect to the

coverage of defects? Complementing inspection efforts could be interesting in case of designing critical

systems. To answer this research question, we compare the sets of defects found by each of the two

approaches.

 4 CrowdSourcing-based Inspection (CSI) Process

The core idea of the proposed CSI process on how to extend a traditional software inspection process to enable the

application of HC&C methods is to split the inspection task into smaller microtasks to allow parallelization of work.

As will be detailed hereafter, these microtasks are conducted within a Text Analysis phase and a Model Analysis

phase. The enable splitting the process we introduced the concept of Expected Model Elements (EMEs), a key

intermediate outcome of a Text Analysis that represents important model elements derived from a reference

document, which is used as an input for defect detection in software engineering models during Model Analysis. A

detailed view on the CSI process follows.

Based on the traditional inspection approach, we focus on the Preparation and Software Inspection phases (i.e.,

individual defect detection and team meeting). Fig. 2 presents the adapted CSI process that consists of four phases:

(1) Preparation; (2) Text Analysis to identify Expected Model Elements (EMEs); (3) Model Analysis to find defects

based on EMEs; and (4) Defect Analysis and Aggregation. Note that the Follow-Up phase (similar to the traditional

inspection process shown in Fig. 1) has been excluded from Fig. 2 because of readability issues.

In the Preparation phase, the moderator performs inspection planning and takes, in addition, the CSI

management role. The author supports the moderator. Main tasks include (a) scoping of inspection artifacts, (b)

preparing the crowdsourcing environment, and (c) uploading reference documents (i.e., a requirements

specification) and inspection artifacts (e.g., EER diagrams or UML variants) into the crowdsourcing platform.

Therefore, the requirements specification, which is often structured into application scenarios, is split into a set of

small entities, e.g., text fragments or sentences. Thus, each sentence represents an input for a microtask for CSI

workers and defines the scope for the text analysis.

The Text Analysis phase includes the analysis of the reference document with focus on identifying EMEs (Step

2a) and the analysis and aggregation of delivered EMEs (Step 2b). The identification of the EMEs (e.g., entities of

the model, their attributes, and relationships between entities) is executed by the CSI workers and the identified

EMEs are reported via the crowdsourcing application. The EME analysis and aggregation is performed by the CSI

management by removing duplicate EMEs and mapping synonyms. The overall output of the of Text Analysis phase

is an agreed and aggregated list of EMEs that represents the input for the next phase.

Reference
Documents

Review Artifacts
(e.g. models)

CSI Planning

Moderator,
CSI Mgmt.

Text Analysis
(TA)

Model Analysis
(MA)

Defect Analysis
& Aggregation

CF Tool CSI worker

TA
Guideline

Output
Language

Selected
EMEs &
Synonyms

Defect
Report

Output
Language

RefDoc

Model Scope

EMEs EME Analysis &
Aggregation

CSI
Management

CSI worker

MA
Guideline

1 2a 2b 3 4

Preparation Phase Model Analysis (MA)
(Defect Detection)

Defect Aggregation
Phase

Text Analysis (TA) Phase

MA
Prep

Author Moderator,
CSI Mgmt.

Figure 2: Crowdsourced inspection (CSI) process

In the Model Analysis phase, the CSI management prepares a selected set of EMEs, derived from manual text

analysis and EME aggregation (output of Step 2b) for model inspection. Furthermore, the CSI management prepares

the model or a sub-model to be inspected. Sub-models are of specific interest if large models have to be inspected.

In context of our study, there was no need for scoping the model because of an acceptable model size. Otherwise,

model scoping (or slicing) strategies could be applied [4]. For defect detection (i.e., model analysis), CSI workers

receive an EME, e.g., an entity attribute, locate it in the model, and report either that the EME was modelled

correctly or report at least one defect. Candidate defects are reported via the crowdsourcing application.

In the Defect Analysis and Aggregation phase, the CSI management aggregates reported defects. The

subsequent Follow-up phase (i.e., rework and inspection closure) is similar to the traditional inspection process (cf.

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

Fig.1). Note that the author is not included in the crowdsourced defect detection tasks. He receives the aggregated

defect detection reports for rework.

For the implementation of the CSI process we used CrowdFlower and a compiled a set of sentences to CF jobs

for Text Analysis and a set of EMEs for the Model Analysis. Note that this setting enabled the inspection moderator

to (a) balance the work load for the CSI workers and (b) flexibly include additional CSI workers if further analysis

results are required for assessing and adjusting the results of the individual steps (e.g., not enough or conflicting

judgements). Based on the distributed setting of the CSI process, resource issues (e.g., availability of experts) can be

addressed easily. Note that the CSI workers represent individual inspectors (or experts) that can be recruited/invited

to support the defect detection process, driven by the CrowdFlower application.

 5 Feasibility Study Description

To investigate the effects of the CSI process, we conducted a feasibility study. This section summarizes the study

description, i.e., study process and variables, experimental setup, participants, study material, and threats to validity.

We used this controlled experiment [19] to investigate the effect of the CSI process compared with a traditional P&P

inspection process.

 5.1 Study Process and Variables

The study process consists of study preparation, execution, and data analysis. Study preparation includes the

preparation of the material for CSI and the traditional software inspection approach (reference documents and

scenarios, guidelines, list of reference defects, and questionnaires), the setup of the controlled experiment (tool setup

for CSI and traditional inspection, study group definition, and schedule), and pilot runs. The study execution phase

includes tutorials for CSI and inspection, and the experiment execution. Data analysis focuses on data screening,

assignment of reported defects to reference defects, and evaluation of research questions.

In the study context we used dependent and independent variables: Independent variables include the seeded

defects of the software (EER) model, defect types, tool configuration, and the study treatments (detailed in the next

subsection). Dependent variables include effort for task execution (in minutes), reported and true defects,

effectiveness (share of reference defects found by a participant), and efficiency (reference defects found per time

interval, i.e., per hour).

 5.2 Experimental Setup

The study design consists of two main groups (Fig. 3 presents the basic experiment setup). The first group (sub-

group A and B) adopts the CSI approach and the second group (sub-group C) uses the traditional best-practice

inspection process and therefore plays the role of a control group. Common to all study groups is a tutorial (30 min)

related to the method applied including a small practical example to get familiar with methods under investigation

and related tool support.

Tutorial

Group A

Text Analysis

Group A

Model Analysis

Group A

Model Analysis

Group B

Text Analysis

Group B

Tutorial

Group C
Traditional Inspection (Group C)

30 min 60 min 60 min

Crowdsourcing-Based Inspection (CSI)

Traditional Best-Practice Inspection (Pen&Paper, P&P)

120 min

Tutorial

Group B

Study Group A (Text Analysis à Model Analysis)

Study Group B (Model Analysis à Text Analysis)

30 min 60 min 60 min

30 min

Study Group C (Best-Practice Inspection)

Figure 3: Setup of the controlled experiment

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

We applied a cross-over design for the CSI part of the study, i.e., text analysis (60 min) followed by the model

analysis (60 min) for group A and similar tasks in an inverse order for group B. Group C applied a traditional best-

practice software inspection (120 min). For the model analysis we used a pre-defined set of Expected Model

Elements (EMEs) to avoid dependencies between different tasks within the experiment groups. Note that these

EMEs were provided by the experiment team, i.e., the authors. We used different experimental material for the

tutorials (application domain: parking garage scenarios) and the experiment (application domain: restaurant

scenarios).

 5.3 Subjects and Population

The study was an integral part of a university course on “Software Quality Assurance” with undergraduate students

at Vienna University of Technology. We applied a classroom setting with an overall number of 75 participants. The

group assignment was based on a random distribution of participants to study groups. Because we consider group C

as a control group we assigned more participants to groups A and B. During the experiment we had 63 CSI and 12

P&P inspectors.

 5.4 Study Materials and Tools

We applied a well-known application domain, i.e., typical scenarios and processes of a restaurant to avoid domain-

specific knowledge limitations. Study material was a textual reference document, i.e., a system requirements

specification including 3 pages in English language, consisting of 7 scenarios, and mentioning approximately 110

Expected Model Elements (EMEs). All 33 sentences of the requirement specification were numbered as vehicle for

defect reporting and referring purposes. The system requirements specification was considered to be correct. For

model inspection we used a medium-scale Extended-Entity Relationship (EER) Diagram including 33 seeded

defects.

The seeded defects were introduced by the experiment team (i.e., the authors) based on defects typically

introduced during software design activities. This was done by selecting a set of real defects introduced by an

independent set of students when building the model based on the reference document. Besides being real, these

defects were spread throughout different parts of the model, which was interesting given that we wanted to have CSI

workers focusing on finding defects in specific parts.

Furthermore, we used an experience questionnaire to capture the background skills of the participants and

feedback questionnaires after each step of experiment process. Finally, we provided guidelines that drove the

experiment and the inspection process.

Material that was provided to the control group (P&P inspectors) included the system specification, the EER,

and guidelines as hardcopies. The CSI inspectors received a printed version of the guidelines. These guidelines (for

P&P and CSI) were also available via our Experiment Management System (EMS) holding all relevant information

sets. We used the following tool set:

 Google.forms were used for capturing the experience of participants and feedback after finalizing

individual tasks, i.e., text analysis, model analysis (group A and B), or software inspection (group C).

 A spreadsheet solution has been used by the P&P inspectors (group C) to capture individual defect reports.

 The CrowdFlower application has been used to drive the text and model analysis task for the CSI

inspectors. For model analysis, each inspector received up to 3 batches of 10 EMEs (out of 110 overall

EMEs) linked to 3 scenarios. These batches of tasks have been assigned to the CSI participants via an

Experiment Management System (EMS).

 An Experiment Management System (EMS) has been used to guide the participants through the individual

experiment steps.

 5.5 Threats to Validity

In this section, we identify and discuss the potential threats to validity of our study and describe how we addressed

them.

Participants were 75 undergraduate students of computer science and business informatics at the Vienna

University of Technology. The study was a mandatory part of the course on “Software Quality Assurance”. Most of

the participants work at least part-time in software engineering organizations. Thus, we consider them as junior

professionals comparable to industrial settings. We used an experience questionnaire to capture and assess prior

experiences and skills. Application domain. We used typical scenarios and requirements derived from restaurant

processes. Thus, all participants are familiar with this application domain.

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

Group assignment. We applied a random distribution of the group assignment using a sort card algorithm. We

provided a tutorial to overcome method and technological limitations.

Study preparation. The experiment team (i.e. the authors) introduced 33 reference defect in the EER diagram

based on typical defects collected during typical software engineering processes. In this paper we report on the

findings of the study after the mapping of reported candidate defects and seeded defects. During the analysis some

few additional defects might have been reported, those were not considered as reference defects. The experiment

package was intensively reviewed by experts to avoid errors. Furthermore, we executed a set of pilot runs to ensure

the feasibility of the study design.

Study execution. To address internal validity, we avoided communication of the individuals during the study

execution phase. The overall duration was limited to 120 min. However, individual breaks were allowed; break

periods had to be reported. To avoid bias between the two CSI process steps we used pre-defined set of EMEs.

However, there could be a possible bias in the cross-over design because the participants are aware of the EER

model after the model analysis phase of the experiment. For the model analysis we used a pre-defined set of

Expected Model Elements (EMEs) to avoid dependencies between different tasks within the experiment groups.

These EMEs were provided by the experiment team, i.e., the authors.

 6 Results

This section summarizes the findings of the feasibility study with focus on: effort, defect detection effectiveness,

defect detection efficiency, and the complementarity of CSI and traditional P&P.

 6.1 Effort

We calculated the defect detection effort based on the reported starting and end time for the P&P and CSI

inspectors. The CSI process is split into text analysis and model analysis tasks. Because the text analysis (i.e.,

identification of EMEs) is not directly related to defect detection for CSI, we added 60 min (assigned to the text

analysis step) to the model analysis duration. Table 1 presents the duration of the tasks.

Table 1: Duration of CSI and P&P tasks [in min]

Group Number of

participants
Mean Std.Dev Min Max

CSI 63 113 min 11.8 min 87 min 140 min

P&P 12 107 min 26.3 min 28 min 135 min

Note that we set an upper limit of 120 min for P&P and 60 min for CSI (plus 60 min for another task, text

analysis). However, some inspectors required more time to complete their P&P task / CSI task. The results showed

that P&P requires on average less time for defect detection but included a higher standard deviation. We also

identified one P&P inspector that had to leave earlier and spent only 28 min for defect detection. The initial results

showed a comparable effort spent for defect detection.

 6.2 Effectiveness

The main task of both study groups was to identify defects and report candidate defects. Table 2 presents the

preliminary results of the reported candidate and true defects (i.e., reported defects that were matched to a reference

defect). If more than one reported defect corresponded to the same reference defect, this defect was only counted

once at the first time of detection.

Table 2: Reported candidate defects / true defects

 Reported Defects Reported True Defects

Group Number of

participants
Mean Std.Dev Mean Std.Dev

CSI 63 14.8 6.42 6.9 4.62

P&P 12 21.3 5.42 10.0 4.40

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

We observed a higher number of reported candidate and true defects for the P&P group compared to the CSI

group. Nevertheless, the CSI group spent at most one hour for defect detection. A more detailed analysis is

necessary to normalize these findings. Based on the identified true defects, effectiveness refers to the share of true

defects found. The EER diagram includes 33 true defects, seeded by the experiment team. Table 3 presents the

descriptive statistics.

Table 3: Defect detection effectiveness [%]

Group Number of

participants
Mean Std.Dev Min Max

CSI 63 20% 14% 0% 67%

P&P 12 30% 13% 12% 52%

On average, the observation showed advantages for the traditional P&P approach, 30% (P&P) versus 20%

(CSI). Although the CSI study group includes 3 participants who did not identify any true defects, we observed 2

participants who outperformed the P&P group. The defect detection time for CSI is limited to 60 min while the P&P

inspectors worked for 120 mins. Following these observations (half the time for defect detection), we believe that

the CSI process achieved comparable results for defect detection effectiveness more detailed investigations are

required to better understand the effects of CSI and P&P on defect detection effectiveness.

 6.3 Efficiency

Defect Detection Efficiency refers to true defects found per time interval, i.e., per hour. Table 4 presents the

preliminary results of defect detection efficiency for CSI and P&P.

Table 4: Defect detection efficiency [defects per hour]

Group Number of

participants
Mean Std.Dev Min Max

CSI 63 6.7 4.8 0 23

P&P 12 5.7 2.1 2.4 9

The results showed advantages for CSI participants: they identified on average 6.7 defects per hour compared to

P&P inspectors identifying 5.7 defects per hour. We also identified one CSI inspector who reported 32 defects

(thereof 22 true defects) resulting in an effectiveness of 67% and an efficient value of 23 defects per hour (this

particular inspector required less than an hour to complete his work). On the other hand, we also identified a set of

CSI inspectors who did not find any true defects (in contrast, every P&P inspectors identified at least one true

defect). However, the preliminary observations tend to support our expectations that CSI can support defect

detection with crowdsourcing techniques.

 6.4 Complementarity of CSI and Traditional P&P

Main goal of software inspection is the early and efficient identification of defects. However, an important aspect, in

particular concerning the design of critical software, is whether or not certain defects tend to remain undetected with

a specific approach. Fig. 3 presents the initial analysis results with focus on all defects in the model (x-axis) and

their detection frequency by the control and CSI groups.

In this additional analysis we observed that 6 defects were not identified by any P&P inspector and 7 defects

were not detected by a CSI inspector. While 4 defects were found by P&P but not CSI, 3 defects were found by CSI

but not P&P. Another 3 defects remain unidentified both by P&P and CSI inspectors. Thus, P&P inspectors found

27 defects, CSI inspectors found 26 defects, and both combined found 30 defects.

The preliminary results indicate that a combination of traditional and CSI might be reasonable to cover a large

part of the system. Of course, this would require additional resources, which might in turn be justified depending on

the criticality of the design of the system under construction.

It is noteworthy also that CSI inspectors could be strategically directed to verify different parts of the reference

document in the model aiming at improving the overall model quality assurance (e.g., by providing them EMEs

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

from different scenarios for model analysis). However, this was not directly explored in the context of the conducted

study and is subject to further investigation.

Figure 4: Frequency of detected defects [%] by individual inspectors in the empirical study

 7 Discussion

In this section we discuss general process observations and potential practical implications of the obtained results

for industry practitioners.

 7.1 CSI Process Observations

The experiment has been conducted in a class-room setting. Thus, the experiment team was able to observe the

experiment process and the defect detection approach applied by the participants. Furthermore, benefits and

limitations of the CSI process approach have been discussed with industry and research experts. Table 5 summarizes

the main process observations for the needs of software inspection improvement for large and complex software

models.

Finally, limited tool support for model inspections hinder efficient P&P inspection while for the CSI process

approach appropriate CrowdSourcing platforms, such as CrowdFlower, can be used to support the inspection

process.

Table 5: CSI process observations

Requirement P&P Inspection CSI

Required Resources Co-Located Distributed

Review Experience Medium/High Low/Medium

Defect Detection

Guidance

Given by Reading

Technique

Driven by EMEs.

Document Coverage Low within a 2 hours

interval

High, given by the task

distribution

Scalability Limited by resources Scalable by extending the

number of (judgements of)

CSI workers

Tool Support Limited for model reviews Application of

crowdsourcing platforms.

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

Regarding Required Resources, the application of crowdsourcing platforms such as CrowdFlower enables the

distribution of derived microtasks among a group of experts and/or CSI workers. Thus, co-located reviews and

inspections do not represent a limiting factor.

Concerning the Review Experience, smaller tasks also support less and medium experienced inspectors that are

guided by the configuration of the microtasks. However, experienced inspectors might be required if a

comprehensive view on the overall system is required.

Defect Detection Guidance for model inspection in traditional P&P inspection approaches mainly rely on

checklists or reading techniques. Available reading techniques are for model inspection are limited and some of

them are specific to certain types of models (e.g., OORTs for UML models [15]). The CSI process approach, on the

other hand, is driven by EMEs, which represent expected model elements and can be easily adapted for different

contexts by changing the types of expected elements. For instance, for the EER diagram of our experiment the

EMEs were entities, attributes and relationships, for UML class diagrams the EMEs would be classes, attributes,

operations, and relationships. Thus, the CSI approach is more generic and can be easily adapted to be used for

inspecting different kinds of models, by simply changing the abstractions to be identified as EMEs.

With respect to Document Coverage and Scalability, in traditional inspections, where the typical review

duration is scheduled for 2 hours of working time, the coverage is limited to available resources. Achieving high

coverage for large and complex software models is challenging and might require high coordination effort between

various (manual) inspection activities. In contrast to traditional inspection, the CSI process approach scales up also

for large and complex software models because it depends on the configuration of the CSI tasks and the

configuration of the inspection process. Thus, the document coverage can be increased by adding more CSI workers

or adding additional judgments in case of limited quality.

 7.2 Practical Implications

From a practical perspective we believe that, especially for critical systems with large and complex models, a

combination of traditional and CSI inspection approaches is a reasonable option for improving the overall defect

detection effectiveness (by finding additional defects) and helping to cover large parts of the system by involving

several/additional CSI workers.

Thus, software organizations could instantiate the CSI process to complement their inspections efforts and

improve the overall document coverage and defect detection effectiveness. Required resources in terms of CSI

workers can be experts within the organization, which could even be geographically distributed, assuring scalability.

While review experience is desired, the small CSI tasks also support less and medium experienced inspectors that

receive defect detection guidance by the configuration of the micro tasks. For tool support existing crowdsourcing

platforms can be used.

Another noteworthy practical implication is that some basic crowdsourcing tool configuration expertise and

potential effort overhead is required for the CSI management role (cf. Fig. 2), which could be performed by the

inspection moderator. For instance, during the Preparation phase this role is responsible for preparing the

crowdsourcing environment, uploading reference document scenarios (split into a set of small sentences) as tasks

into the crowdsourcing platform for the Text Analysis phase. At the end of Text Analysis, this role is responsible for

removing duplicate EMEs and mapping synonyms to reach an agreed aggregated list of EMEs that represents the

input for the Model Analysis phase. Before Model Analysis, the CSI management role is responsible for preparing

crowdsourcing tasks for the selected set of EMEs and the model to be inspected. Finally, in the Defect Analysis and

Aggregation phase CSI management aggregates reported defects.

Most of the CSI management tasks can be further supported exploring features that are common to

crowdsourcing applications (e.g., for preparing tasks and aggregating results) or even automating new features (e.g.,

generating crowdsourcing tasks from reference documents and lists of EMEs). Nevertheless, following a scientific

approach for developing software technologies, these additional automation efforts should naturally be conducted

after further understanding the results and implications of the overall CSI approach through feasibility and

observational studies. In this paper we delivered this important first step by providing and discussing results of the

feasibility study. Conclusions and an outline of future work follow.

 8 Conclusions and Future Work

In this paper we provided further details on our proposed CrowdSourcing-based Inspection (CSI) process to support

early defect detection of large-scale software engineering artifacts and models. The design of the CSI process is

based on a traditional inspection process by splitting up software inspection tasks in small microtasks for a text

analysis and a model analysis phase. We introduced the concept of Expected Model Elements (EMEs), a key

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

outcome of a text analysis that represents important model elements derived from a reference document, which is

used as an input for defect detection in software engineering models during model analysis.

We conducted a controlled experiment involving 75 participants to investigate the feasibility of applying CSI

and evaluate its effects compared to P&P inspection process. We presented the study process and reported the

experiment results concerning effectiveness and efficiency of defect detection for the CSI and the traditional P&P

inspection process. From our overall process observations, we conclude that the designed CSI process enables

conducting distributed and scalable inspections (RQ.1). The results also indicate that the concept of EMEs helps to

improve the defect detection performance for model inspection, we observed comparable results for defect detection

effectiveness and advantages for defect detection efficiency (RQ.2). Finally, for assuring the quality of critical

system designs a combination of traditional and CSI inspection approaches represents a reasonable option,

improving the overall defect detection effectiveness (by finding additional defects) and helping to cover large parts

of the system by involving several/additional CSI workers (RQ.3).

While in this paper we focused on the feasibility and used medium sized artifacts, in future work we plan to

investigate how the CSI process can be employed in the context of very large artifacts. For instance, based on

selected parts of the reference documents, scoping inspection efforts on smaller parts of a model under inspection.

We believe that this could allow exploring the CSI crowdsourcing capabilities to achieve quality assurance of large

models beyond the current state of the art inspection possibilities. Another future research direction will focus on

finding out how many CSI inspectors (considering inspector capabilities) should process the same task to get a good

automated prediction on correct task outcome.

Acknowledgements

The financial support by the Austrian Federal Ministry for Digital, Business and Enterprise and the National
Foundation for Research, Technology and Development is gratefully acknowledged. Thanks also to the Brazilian
Research Council (CNPq, process number 460627/2014-7).

References

[1] P. Anderson, T. Reps, T. Titelbaum, M. Zarins, “Tool Support for Fine-grained Software Inspection,” IEEE

Software, 20(4), pp.42-50, 2003.

[2] A. Aurum, H. Petersson, C. Wohlin, “State-of-the-Art: Software Inspection after 25 years,” Journal of

Software, Testing, Verification and Reliability, 12(3), pp.133-154, 2002.

[3] S. Biffl, P. Grünbacher, M. Halling, “A Family of Experiments to Investigate the Effects of Groupware for

Software Inspection,” Automated Software Engineering, 13(3), pp.373-394, 2006.

[4] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh and T. Yue, “Traceability and SysML design slices to support

safety inspections: A controlled experiment,” ACM Transactions on Software Engineering and Methodology

(TOSEM), 23(1), 2014.

[5] M.E. Fagan, “Design and code inspections to reduce errors in program development,” IBM Systems Journal,

15(7), pp. 182-211, 1976.

[6] M. Kalinowski, G. Travassos, “A computational framework for supporting software inspections,” in

Proceedings of the International Conference on Automated Software Engineering (ASE), pp. 46-55, 2004.

[7] F. Lanubile, T. Mallardo, “Tool support for distributed inspection,” in Proceedings of COMPSAC, 2002.

[8] T.D. LaToza, A. van der Hoek, “Crowdsourcing in Software Engineering: Models, Motivations, and

Challenges,” IEEE Software, 33(1), pp. 74-80, 2016.

[9] K. Mao, L. Capra, M. Harman, Y. Jia, “A survey of the use of crowdsourcing in software engineering,”

Journal of Systems and Software, 28p., Available: http://dx.doi.org/10.1016/j.jss.2016.09.015, 2016.

[10] NASA, “Software Formal Inspection Standards,” NASA-STD-8739.9, NASA, 2013.

[11] M. Poesio, J. Chamberlain, U. Kruschwitz, L. Robaldo, L. Ducceschi, “Phrase detectives: Utilizing collective

intelligence for internet-scale language resource creation,” ACM Trans. Interact. Intell. Syst., 3(1), 44p., 2013.

[12] A. Quinn, B. Bederson, “Human Computation: A Survey and Taxonomy of a Growing Field,” in Proc. of

Human Factors in Computing Systems (CHI), pp.1403-1412, 2011.

[13] P. Rigby, B. Cleary, F. Painchaud, M-A. Storey, D. German, “Contemporary Peer Review in Action: Lessons

Learned from Open Source Development,” IEEE Software, 29(6), pp.56-61, 2012.

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 1, PAPER 3, APRIL 2018

[14] W. Suryn, Software Quality Assurance. A Practitioner’s Approach. Wiley, 2014.

[15] G. Travassos, F. Shull, M. Fredericks, V.R. Basili, “Detecting Defects in Object Oriented Designs: Using

Reading Techniques to Increase Software Quality,” in Proceedings of the 14th ACM SIGPLAN OOPSLA

Conference, pp 47-56, 1999.

[16] D. Winkler D., F.J. Ekaputra, S. Biffl, “AutomationML Review Support in Multi-Disciplinary Engineering

Environments”, in Proceedings of ETFA, pp.1-8, 2016.

[17] D. Winkler, M. Sabou, S. Petrovic, S. Biffl, M. Kalinowski, G. Carneiro, “Improving Model Inspection with

Crowdsourcing,” in Proceedings of the 4th International Workshop on Crowdsourcing in Software

Engineering (CSI-SE), ACM/IEEE International Conference on Software Engineering (ICSE), Buenos Aires,

Argentina, 2017.

[18] D. Winkler, M. Sabou, S. Petrovic, G. Carneiro, M. Kalinowski, S. Biffl, “Investigating Model Quality

Assurance with a Distributed and Scalable Review Process,” in Proceedings of the 20th Ibero-American

Conference on Software Engineering (CIBSE), Experimental Software Engineering (ESELAW) Track, Buenos

Aires, Argentina, 2017.

[19] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, A. Wessl, Experimentation in software engineering.

Springer, 2012.

