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ABSTRACT
In Cyber-Physical Production System (CPPS) engineering, Assem-
bly Sequence (AS) models of products are primary engineering
artifacts. Product variants are often designed as Product-Process-
Resource (PPR) AS models that are initiated with clone-and-own
approaches and by the manual derivation of shared features. This
paper introduces the PPR Feature Candidate Identification (PPR-FCI)
approach for identifying features from PPR AS models of product
variants. From these features our approach derives a superimposed
PPR that describes design options for engineers planning the CPPS.
The approach is based on existing feature extraction research which
we adapted to the scope of PPR models in CPPS engineering. Based
on a real-world product line, we evaluate our PPR-FCI approach for
feasibility and usefulness by comparing our automated approach
to the traditional manual approach with domain experts. Initial
findings show that the approach can identify relevant features from
PPR AS models and domain experts found the results useful. How-
ever, further research is required to improve the PPR-FCI approach
regarding the optimization of PPR Assembly Sequence models.
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1 INTRODUCTION
Cyber-Physical Production Systems (CPPSs) are software-intensive
systems that utilize modern ICT for smartly interacting with their
physical environment to produce a large variety of products, such as
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automated car manufacturing plants. CPPSs have attracted consid-
erable research interest recently [9, 10]. CPPS engineering involves
several engineering disciplines, like mechanical, electrical, and soft-
ware engineering, and related artifacts [1, 6]. The complexity and
heterogeneity of such engineering environments makes knowledge
exchange, e.g., on product properties, essential but challenging.

For our industry partner, an Austrian design and system inte-
gration enterprise for automated high-performance manufacturing
machines, Assembly Sequences (ASs) are crucial knowledge arti-
facts that define production step sequences transforming input to
output products. The model-based Product-Process-Resource (PPR)
approach [13] is capable of representing ASs, by allowing to model
products (e.g., gear boxes), the corresponding processes to create
them (e.g., screwing or gluing), and resources that provide skills
for these production processes (e.g., a screwdriver or a glue gun).

To model the requirements for a specific CPPS, engineers fol-
low a clone-and-own approach to create ASs for product variants
representing product, process, and resource variability of the CPPS.
Today, engineers, typically use COTS spreadsheet tools to design
ASs, manually identify their commonalities by comparing them,
and transfer the commonalities to large component matrices. These
component matrices are input to planning CPPS modules that cre-
ate assembly units of the products. However, manually identifying
features in ASs and component matrices is considered error-prone,
hard to reproduce, and costly. A systematic, reproducible, and (semi-
)automated approach to identify and model Feature Candidates (FCs)
would thus be a significant improvement and support engineers
in reusing (parts of) Product-Process-Resource Assembly Sequences
(PPR ASs) for designing additional product variants.

In earlier work, we proposed the superimposed PPR model [9].
In this paper, we investigate how technology-independent, model-
based methods for Feature Extraction (FE) can be utilized in the con-
text of PPR modeling to support CPPS engineers in systematically
defining PPR model variants. We present a reproducible (semi-) au-
tomated four-step PPR Feature Candidate Identification approach
to identify feature candidates from a set of PPR ASs. We build on
the Feature Candidate Identification method for source-code-based
UML models [14] and adapt it to PPR models for identifying can-
didates to build a superimposed model from them. This provides
an initial variability model to the engineers that represents the
commonalities and variability of the Assembly Sequences.

We evaluated the PPR Feature Candidate Identification approach
in a real-world context, a CPPS recently planned by our industry
partner by (a) testing feasibility with a use case from the industry
partner, (b) comparing the PPR-FCI approach with the traditional
manual feature extraction approach, and (c) collecting feedback on
its usefulness from CPPS engineering domain experts.
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Figure 1: Assembly Sequences of three rocker switch variants and the resulting superimposed model on the rightmost side.

2 RELATEDWORK
Manually analyzing and modeling the variability of existing sys-
tems is a tedious task. Feature Extraction and Identification methods
have thus been proposed to automate this activity. They support
revealing variability in artifacts like source code or design models.

Cruz et al. [4] investigated various feature location techniques,
revealed that textual approaches are of growing interest and eval-
uated three textual information retrieval methods. Such methods
aim at large (natural language) text representations rather than
structured text or models.

Most feature extraction methods focus on a particular type of
model or on source code written in a particular programming lan-
guage. For example, Ryssel et al. [11, 12] introduced an approach for
automated feature identification in function-block models, which are
used to program embedded systems, to foster their reuse. Carbonnel
et al. [2] investigated two mathematical frameworks for knowledge
discovery, i.e., Formal Concept Analysis and Pattern Structures, to
extract complex variability information from relations of product
descriptions.

Some feature extraction methods are able to deal with multiple
artifacts (types). For instance, Martinez et al. [8] described the tool-
supported, generic, and extensible BUT4Reuse approach that can
extract variability information from a variety of software artifacts.

Ziadi et al. [14] introduced the three-step (semi-automated) Fea-
ture Candidate Identification (FCI) approach to extract features from
source code of software product variants. The approach identifies
feature candidates in Unified Modeling Language (UML) models.
We build on this FCI approach and adapt it to the context of PPR
modeling. Ziadi et al. [14] achieved the feature identification by
(a) reverse-engineering source code into a UML class model for
each software product variant, (b) decomposing the UML models to
create their particular Construction Primitives (CPRs), atomic pieces
that represent building blocks of UML models, and identifying

features using their FCI algorithm, and, finally, (c) manually prun-
ing irrelevant candidates or adding missed features. Thus, the FCI
approach makes use of CPRs that can be considered a technology-
agnostic Domain-Specific Language (DSL) for UML models, which
we pursue to re-design for PPR models.

3 ROCKER SWITCH PRODUCT LINE
We illustrate our Feature Candidate Identification approach with
the running example of a rocker switch. Rocker switches have one
or more rockers1 for controlling devices like light-switches or sun-
blinds. Basically a rocker switch has a socket with several contacts
wired to the electrical devices, the energy source, and the ground,
with a corresponding number of rockers and, to activate them,
a varying number of switch panels. They can be realized, e.g.,
as single-pole-single-throw, double-pole changeover, or four-way
switches, depending how many device functions a single rocker
switch controls at once. Depending on the type of switch the or-
der of how the parts are assembled is essential. In Figure 1, the
first three diagrams from the left illustrate parts of the Assembly
Sequences of three rocker switch variants as PPR AS models.

Our industry partner plans a CPPS for manufacturing 12 rocker
switches variants, each requiring up to 60 steps to assemble the final
product resulting in more than 600 Assembly Sequence segments
to design, manage, and maintain. Before planning the actual CPPS,
the basic engineers have to gain insights on the sequence of manu-
facturing steps, i.e., the Assembly Sequence, of a particular product
variant, often by disassembling the products into their assembly
units. Today, our industry partner creates and manages the ASs
in spreadsheets, using a clone-and-own approach to re-build the
particular AS for each variant and manually derive the commonali-
ties and variability of the products. However, the industry partner
explores designing a tool that utilizes PPR models for reducing
effort and risk in the CPPS engineering process.
1Example of a rocker switch: https://commons.wikimedia.org/wiki/File:3977.jpg

https://commons.wikimedia.org/wiki/File:3977.jpg
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1 Base = {
2 process('insert','socket w contacts')
3 input2output('socket','socket w contacts')
4 input2output('pole 1','socket w contacts')
5 resource('linefeed (1)','insert','socket')
6 resource('linefeed (1)','insert','pole1')
7 process('insert/glue','socket w rockers')
8 input2output('rocker 1 (1)','socket w rockers')
9 input2output('socket w contacts','socket w rockers')
10 resource('linefeed (2)','insert/glue','rocker1 (1)')
11 resource('linefeed (2)','insert/glue','socket w contacts')
12 resource('gluegun','insert/glue','rocker 1 (1)')
13 resource('gluegun','insert/glue','socket w contacts')
14 }, F1 = {
15 input2output('changeover1','socket w contacts')
16 resource('linefeed (1)','insert','changeover 1')
17 process('insert/screw','socket w changeover')
18 input2output('changeover 2','socket w changeover')
19 input2output('socket w rockers','socket w changeover')
20 resource('linefeed (3)','insert/screw','changeover 2')
21 resource('screwdriver','insert/screw','changeover 2')
22 resource('linefeed (3)','insert/screw','socket w rockers')
23 resource('screwdriver','insert/screw','socket w rockers')
24 }, F2 = {
25 input2output('rocker 1 (2)','socket w rockers')
26 resource('linefeed (2)','insert/glue','rocker 1 (2)')
27 resource('gluegun','insert/glue','rocker 1 (2)')
28 }, F3 = {
29 input2output('neutral','socket w contacts')
30 resource('linefeed (1)','insert','neutral')
31 }

Listing 1: CPRs from Figure 1, clustered to a set of features.

4 FEATURE CANDIDATE IDENTIFICATION
FOR PPR ASSEMBLY SEQUENCE MODELS

This section introduces the steps of our PPR Feature Candidate
Identification (PPR-FCI) approach. Building on the approach by
Ziadi et al. [14], our approach follows four steps described below.

4.1 PPR-FCI 1: Design PPR AS models
Domain experts design or collect a set of PPR AS models as part
of their usual design tasks in basic engineering (see Figure 1, three
models on the left).

4.2 PPR-FCI 2: Derive construction primitives
An expert or algorithm derives the Construction Primitives [14] from
the set of PPR models coming from Step 1. For the context of CPPS
engineering, we designed PPR Construction Primitives, atomic ele-
ments of a PPR AS model (see online material2 and Listing 1, lines
2, 3, and 5). Therefore, we designed an initial PPR DSL that provides
these construction primitives in a machine-readable format. Follow-
ing the three aspects of the PPR approach, the main concepts that
the DSL represents are processes, resources, and relations between
products describing how products are connected.

4.3 PPR-FCI 3: Identify PPR feature candidates
The PPR-FCI algorithm then identifies feature candidates from the
set of PPR construction primitives (see PPR-FCI 2). Following the
initial idea of Ziadi et al. [14] to cluster the construction primitives

2Further material, like the DSL Definition and the Java prototypes, is available online:
https://github.com/tuw-qse/ppr-fci

to a set of Feature Candidates, we build on their FCI algorithm (see
the steps in Algorithm 1).

Algorithm 1: PPR-FCI algorithm based on Ziadi et al. [14]
Input: A set PPR AS models AllM = {M1, ..,Mn }, where

eachMx is a set of PPR CPRs
Output: FC , the set of feature candidates of the models

1 FC = ∅;
2 R = {i, cpj |∃Mi ∈ AllM∃cpj ∈ Mi };
3 while R , ∅ do
4 mf cp :=mostFrequentCP(R);
5 models := {Mi |Mi ∈ AllM ∧mf cp ∈ Mi };
6 f :=

⋂
Mi ∈models

Mi ∩ R;

7 R := R \ f ;
8 FC := FC ∪ { f };
9 end

10 return FC

The PPR-FCI algorithm initially holds an empty set F for the
PPR feature candidates and a set R of all construction primitives
of the PPR model variants (see Algorithm 1, lines 1 and 2). In our
case, these are the construction primitive sets of the first three PPR
model variants of Figure 1. The algorithm then iterates over the set
R until it is empty, conducting the following steps.

(1) the algorithm first identifies in each iteration the most fre-
quent PPR construction primitivesmf cp of sets in AllM . (2) The
PPR construction primitives of the models containing themf cp are
united in a setmodels . (3) From this combination, the PPR feature
candidates f , which is a set of the most frequent construction primi-
tives in themodels set, is extracted and united with the construction
primitives remaining in R. (4) The PPR construction primitives of
f are removed from R to ensure that they are not used in another
feature candidate. (5) Finally, the set f is united as subset with the
PPR feature candidate set FC , representing the sets of construction
primitives clustered into distinct features.

We developed the CPR2FC prototype (see online material), a sim-
ple Java-based implementation for executing the algorithm on PPR
models represented as text-based construction primitive files, re-
turning a list of feature candidates.

For the rocker switch variants shown in Figure 1, the result of
this process is the list of features presented in Listing 1 with a Base
feature that is used in all three assembly sequences variants and
three optional features, F1 to F3. The listing shows, e.g., that the
Neutral contact is only part of feature F3, while feature F1 includes
the Changeover 1 and the complete process step with Changeover 2
marked with the hatched pattern in Figure 1.

4.4 PPR-FCI 4: Build superimposed PPR model
In this step, the approach builds a superimposed PPRmodel [9] from
the set of identified feature candidates coming from PPR-FCI Step
3. We, therefore, developed the superimposed PPR model algorithm
(see online material) that constructs a graph of the superimposed
PPR model (see rightmost model in Figure 1) from the set of PPR

https://github.com/tuw-qse/ppr-fci
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feature candidates identified (see Listing 1). To include the repre-
sentation of the features, differently colorized nodes replace the
feature annotations in the resulting superimposed model.

To evaluate the construction step of the superimposed model,
we developed the Java-based FC2SI (see online material) prototype.
This prototype executes the SI PPR algorithm on the feature candi-
dates identified in the previous step, facilitates JGraphT3 to build
the graph, and exports it to the popular GraphViz DOT 4 notation,
which tools like, e.g.,WebGraphViz5 can easily visualize.

5 EVALUATION AND DISCUSSION
Our industry partner provided the use case data (see Section 4.1)
as a spreadsheet. Due to non-disclosure agreements the authors
obfuscated the particular evaluation set data provided in this work.

To evaluate the feasibility, we compared our PPR-FCI approach to
the traditional manual approach, together with two senior domain
experts of our industry partner. One expert was a planning engineer
with longstanding experience in planning product variants and
CPPS, the other was an expert for CPPS configuration. In PPR-FCI 1,
one of the authors created the PPR models from the rocker switch
evaluation set in correspondence with the industry partner and
discussed their validity with the domain experts. The models in
Figure 1 represent a small subset of the evaluation set. Guided
by the domain experts, the researchers analyzed valid features
from the set of PPR AS variants in the study context. In PPR-FCI 2,
the researchers translated the model variants to the construction
primitives in the DSL. We conducted this step manually, but plan
to develop a suitable supporting tool as part of our future work.
Before starting PPR-FCI 3, domain experts, guided by researchers,
manually created a superimposed PPR model to create an empirical
evaluation baseline for the study context. In PPR-FCI 3, we ran
the CPR2FC prototype on the construction primitives to identify
the feature candidates. In PPR-FCI 4, the researchers ran the FC2SI
prototype to create a superimposed PPR model from the feature
candidates, and compared it to the manually created model.

In comparison to the traditional manual approach, our approach
(a) effectively found the same features that domain experts extracted,
(b) was reproducible, which does not leave the feature identification
to the skills of the domain expert, and (c) reduced errors that occur
in the manual approach, in particular, due to copy-and-adapt errors
in the large spreadsheets that are hard to verify [3].

The researchers interviewed the domain experts on the perceived
usability and usefulness [5] of the results of the PPR-FCI approach,
in particular the superimposed PPR model. Overall the domain
experts found the approach (a) usable, specifically the FCI prototype
making the process reproducible and more efficient, stating that
“this approach could save us a lot of time and prevent many copy &
paste errors” and (b) useful, in particular the superimposed PPR
AS model as it facilitates and eases the analysis and discussion of
which product variants can be produced on a CPPS. One expert
commented that “the [superimposed] model allows us to better discuss
requirements and issues of variants with colleagues and customers.”

3JGraphT: https://jgrapht.org
4GraphViz: https://graphviz.org
5WebGraphViz: http://webgraphviz.com/

Discussion of Results. In this work, we aimed at extracting fea-
tures from existing PPR models to build a basic PPR variability
model that systematically captures the variability of products, pro-
duction processes, and related resources. We found the suitable
definition of construction primitives for a particular model type
to be the key enabler for using the FCI algorithm [14] in the PPR
domain. Therefore, model information, such as relations to attribute
lists, needs to be deconstructed to multiple primitives describing
single instances, as a prerequisite to the correct algorithmic extrac-
tion of feature candidates. Fortunately, we were able to identify
promising primitive concepts in PPR models. Our evaluation results
confirmed the feasibility of the adaptation of the FCI approach to
the context of PPR models. We, furthermore, investigated to what
extent the PPR-FCI approach supports CPPS engineers together
with domain experts from our industry partner. Domain experts ap-
preciate the variability representation in a type of model they know
and understand, which would advocate for visual model enrichment
approaches [7, 9]. However, we also found that dependencies in
the superimposed model were often not “visible enough” impeding
reasoning on these models and that it misses functionality, e.g.,
formulas, that domain experts use regularly in spreadsheets.

Limitations. Several tasks of the evaluation were conducted by
the researchers, which we recognize as a threat to validity. How-
ever, to mitigate this threat, during these phases the authors were
in close contact with domain experts at the industry partner to
gather feedback. Further, the empirical study was limited to a set
of product variants and domain experts of one industry partner.
However, our industry partner claimed that the rocker switch sam-
ple is “representative for a considerable range of industrial products
including those with a relatively large share of variability.”

6 CONCLUSION AND FUTUREWORK
Product-Process-Resource Assembly Sequencemodels of product vari-
ants manufactured by a CPPS are primary engineering artifacts,
often created using clone-and-own approaches. In this paper, we
investigated which existing feature extraction approaches can be
adapted to PPR models and introduced a four-step approach for
PPR Feature Candidate Identification in PPR model variants based
on the FCI approach Ziadi et al. [14]. We constructed a DSL for
PPR models representing construction primitives and created a
superimposed model from the identified candidates to support prac-
titioners. We evaluated our approach based on the example of a set
of rocker switch variants from an industry partner and showed that
the approach is able to identify features relevant to domain experts.

Future Work includes extending a model-based design tool to-
wards a PPR tool to create models and identify common features.
Further research is also required to improve the algorithm in terms
of stability to refactorings. Finally, we plan to extend the empirical
evaluation to a larger setting including several product types.
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