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Abstract. [Context] Expert sourcing is a novel approach to support quality 
assurance: it relies on methods and tooling from crowdsourcing research to split 
model quality assurance tasks and parallelize task execution across several expert 
users. Typical quality assurance tasks focus on checking an inspection object, 
e.g., a model, towards a reference document, e.g., a requirements specification, 
that is considered to be correct. For example, given a text-based system 
description and a corresponding model such as an Extended Entity Relationship 
(EER) diagram, experts are guided towards inspecting the model based on so-
called expected model elements (EMEs). EMEs are entities, attributes and 
relations that appear in text and are reflected by the corresponding model. In 
common inspection tasks, EMEs are not explicitly expressed but implicitly 
available via textual descriptions. Thus, a main improvement is to make EMEs 
explicit by using crowdsourcing mechanisms to drive model quality assurance 
among experts. [Objective & Method] In this paper, we investigate the 
effectiveness of identifying the EMEs through expert sourcing. To that end, we 
perform a feasibility study in which we compare EMEs identified through expert 
sourcing with EMEs provided by a task owner who has a deep knowledge of the 
entire system specification text. [Conclusions] Results of the data analysis show 
that the effectiveness of the crowdsourcing-style EME acquisition is influenced 
by the complexity of these EMEs: entity EMEs can be harvested with high recall 
and precision, but the lexical and semantic variations of attribute EMEs hamper 
their automatic aggregation and reaching consensus (these EMEs are harvested 
with high precisions but limited recall). Based on these lessons learned we 
propose a new task design for expert sourcing EMEs. 
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1   Introduction 

During the design of software systems, a variety of models are created in the process 
of transforming requirements and/or specifications of the desired system into the 
corresponding software. These models include Extended Entity Relationship (EER) 
diagrams or UML model variants for designing databases and software system structures 
and behavior. The tasks of creating such models from software specifications and their 
subsequent verification to ensure their quality, i.e., through software model inspection 
[1], are cognitively intense tasks, that require significant time and effort investment from 



software engineers. In particular, large software models and large associated reference 
documents, such as requirement specifications, are challenging to inspect with limited 
resources in one inspection session as overly long sessions typically lead to cognitive 
fatigue [6]. Thus, a typical inspection session is scheduled for about two hours; large 
artifacts have to be scheduled in multiple inspection sessions to achieve sufficient 
coverage of the inspection object. Therefore, reference documents and inspection objects 
need to be split accordingly. Furthermore, different inspection tasks can be distributed 
among a group of domain experts for inspection. Human Computation and 
Crowdsourcing (HC&C) mechanisms can help splitting the workload and distributing 
inspection tasks among a group of experts [9, 10, 11].  

In general, HC&C techniques rely on splitting large and complex problems into 
multiple, small and easy tasks solvable by an average contributor in a suitable population 
and then coordinating the collection and aggregation of individual micro-contributions 
into a larger result [8]. As a result, we defined and introduced a novel Crowdsourcing-
based Software Inspection (CSI) process, previously described in [9, 10, 11] and 
illustrated in Figure 1. 
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Figure 1: Crowd-based Software Inspection (CSI) process [11]. 

The CSI process covers the Preparation and Software Inspection core steps of the 
traditional inspection process and consists of four fundamental phases: (1) CSI 
Preparation and Planning; (2) Text Analysis (TA) of reference documents to identify 
model building blocks, i.e., Expected Model Elements (EMEs) and aggregation of 
identified EMEs; (3) Model Analysis (MA) to identify candidate defects in the software 
model; and (4) Follow-up for defect analysis and aggregation.  

During the Preparation and Planning Phase (Phase 1), the moderator performs 
inspection planning. He additionally fulfills the CSI management role. His tasks include 
(a) scoping of inspection artifacts, (b) preparing the crowdsourcing environment, and (c) 
uploading reference documents and inspection artifacts into the crowdsourcing platform, 
such as Crowdflower1.  

The goal of the Text Analysis (Phase 2) is the elicitation of key components (i.e., 
building blocks or co-called Expected Model Elements (EMEs)) of the model based on 
the reference document. EMEs include entities, attributes, and relations, that are present 
in system requirements specifications (i.e., reference documents) and need to be 
modeled in the corresponding software model, e.g., in an EER diagram. Table 1 in 
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Section 4 lists typical EMEs extracted from the description of a restaurant billing system, 
representing the reference document (i.e., a requirements specification). Key EME 
classes include correct EMEs, synonyms and variations, and incorrect EMEs (see 
Section 4 for details). Note that the EME identification phase is supported by a 
crowdsourcing application. This phase focuses on two sub-phases: (2a) identification of 
candidate EMEs by a group of inspectors. We experiment with a task design where 
inspectors are shown one specification sentence at a time and asked to provide, based on 
an input syntax, the EMEs appearing in that sentence (see Figure 4 for a task screenshot). 
Results are sets of candidate EMEs provided by every crowd worker in this sub-phase; 
(2b) EME analysis and aggregation where the moderator compiles an agreed set of 
EMEs based on individual results. Result is an agreed set of EMEs as input for the model 
analysis phase of the CSI process (Phase 3). Note that in this paper we focus on phase 
2b, i.e., the EME identification and aggregation step.  

In the Model Analysis phase (Phase 3), inspectors verify the model itself (e.g., an 
EER diagram), or a subset thereof, while being guided by EMEs. In other words, EMEs 
are used as anchors for splitting the model verification task into smaller instances that 
can be solved in a distributed fashion according to HC&C principles. Output of this 
phase is a set of candidate defect lists provided by individual inspectors during their 
crowdsourcing task. The role of the CSI management in phase 3 is to prepare the model 
or a sub-model to be inspected (based on CSI planning definitions). In the Follow-Up 
Phase (Phase 4), the CSI management aggregates reported defects. Output of this final 
phase is a set of defects as a consensus of individual defect lists. Note that this task is 
completed by the CSI management.  

To investigate the efficiency and effectiveness of defect detection in context of 
model inspection with CSI, we have conducted a large-scale empirical study involving 
university students as study participants in the fall of 2016. We have already reported 
initial findings of the CSI process approach regarding effectiveness and efficiency of 
defect detection when guided by high quality EMEs. High quality EMEs have been 
identified by the study authors [9, 10, 11]. In context of the CSI process approach EME 
identification is the main output of the Text Analysis process phase. In this paper, we 
turn our attention to the feasibility of this text analysis task. Namely, we want to assess 
the feasibility of distributing the task of identifying EMEs in textual documents that 
describe a system specification to a number of experts as opposed to being solved by a 
single expert. Another key goal is to use lessons learned to improve the design of the 
text analysis task. For evaluation purposes, we perform a partial analysis of the CSI 
feasibility study reported in [9, 10] with focus on the text analysis output. We look at the 
EME’s identified in one of 4 sessions of the feasibility study and compare these EMEs 
to a gold standard created by the study authors (i.e., high quality EMEs used in previous 
investigations). We conclude that, while entity EMEs can be identified with high 
precision, precision heavily deteriorates for more complex EME types where more 
variations are possible. This points to the need of new task designs for collecting EMEs 
in a reliable manner. 

The remainder of this paper is structured as follows: Section 2 presents related work 
and Section 3 introduces to the research questions. In Section 4 we present the setup of 
the feasibility study and in Section 5 the experimental results and discussions. Section 6 
provides a discussion of the experimental results and reflects on limitations. Section 7 
summarizes lessons learned for text analysis task design. Finally, Section 8 concludes 
and identifies future work. 



2  Related Work 

HC&C methods have been recently used to solve a diversity of Software Engineering 
(SE) tasks and lead to the emerging research area of Crowdsourced Software 
Engineering (CSE) defined as “the act of undertaking any external software 
engineering tasks by an undefined, potentially large group of online workers in an open 
call format” [4, 5]. 

The intensified interest in the application of crowdsourcing techniques in SE can be 
seen as a response to the appearance of mechanized labor (micro tasking) platforms 
such as Amazon Mechanical Turk2 (AMT) or CrowdFlower3 (CF). These platforms 
have popularized the Micro tasking crowdsourcing model. Micro tasking differs from 
more traditional models of distributed work in SE, such as collaboration and peer-
production, by being more scalable, thanks to enabling parallel execution of small task 
units by non-necessarily expert contributors [4]. As such, Micro tasking is promising 
to address challenges in several cognitively complex software engineering tasks, 
including software inspection and model element identification. Some of the benefits 
of the Micro tasking model are [5]: improved coordination (e.g., of inspection team 
members, tasks, and results), reduction of cognitive fatigue (by removing redundant 
work and reusing intermediate results from previous steps), increased coverage (as 
some parts of large artifacts might not be covered with traditional, weakly-coordinated 
approaches), more diversity (support for dealing with various inspection artifacts and 
access to a wider variety of inspectors), and accelerated processes (by parallelization of 
small tasks and access to more inspectors). 

 
Figure 2: Overview of number of papers classified by Mao et al. [5] as using 

crowdsourcing for tasks corresponding to each software development life-cycle stage. 

Because of these benefits, crowdsourcing has been applied to address a variety of 
tasks pertaining to all stages of the Software Development Life Cycle (SDLC) as 
reported by Mao et al. in a recent, extensive survey [5]. Based on their classification, 
we derived an intuitive overview of the intensity of crowdsourcing research in each 
SDLC stage as shown in Figure 2. Seventeen (17) papers report work within the 
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Planning and Analysis phase on tasks such as requirements acquisition, extraction and 
categorization. The problems from the Design phase have attracted less approaches, 
with only four papers attempting crowdsourced user interface and architecture design. 
Implementation phase specific tasks such a coding and debugging have been 
investigated in 26 papers. Problems that were crowdsourced from the Testing phase 
were reported by 22 papers and included usability, performance and GUI testing. 
Within the Maintenance phase, crowdsourcing was used for software adaptation, 
documentation and localization among others, attracting a similar volume of 
approaches as the implementation phase. None of the investigated papers cover static 
quality assurance approaches such as software inspection, where the CSI process 
provides benefits for early defect detection in software models [9, 10, 11]. 

However, extracting higher-level conceptual elements from text with HC&C 
techniques has been investigated before. For example, Cascade [3] is an approach to 
build classification hierarchies (i.e., taxonomies) from collections of independent text 
items (e.g., textual answers from question answering sites). An important step is to 
identify categories that best describe each text item. Cascade is designed to run on 
collections of independent items and it would not be suitable to extract higher-level 
conceptual elements (e.g., entities, relations) from ordered, logically-connected 
sequences of items such as sentences in a systems description document.  

Approaches that can extract conceptual elements from interconnected item sets 
include PhraseDetectives [7], for co-reference resolution in text corpora, or, work on 
extracting categories in interconnected texts [2]. Unlike previous works, André et al. 
also focuses on tasks where domain expertise is desirable and shows that non-expert 
users can be supported in making sense of specialized texts [2]. This is an important 
aspect in the context of software inspection, which is more amenable to be solved by 
experts through expert sourcing (i.e., enlisting experts to solve tasks by using HC&C 
principles) rather than layman crowds.  

In summary, a variety of HC&C approaches have been proposed to solve a wide 
range of SE tasks in all phases of the SDLC. Yet, the software model inspection task, 
situated within Planning and Analysis and Design SDLC phases, has not been 
addressed. Our work focuses on this gap and explores how HC&C micro tasking 
principles can be used to improve software inspection processes through expert based 
crowdsourcing (i.e., expert sourcing). 

3   Research Questions 

With focus on EME identification in context of the CSI process approach, the main 
research questions focus on:  

RQ1:  What is the overall quality of the CSI-based EME identification? To what 
extent can this distributed process lead to a high-quality set of EMEs? In the study 
context, we consider the EMEs provided by the study authors as a gold standard example 
of high quality EMEs.  

RQ2: What are performance differences when identifying different types of EMEs? 
What challenges arise when distributing the identification of EMEs of increasing 
structural complexity? For the purpose of this paper, we define the structural complexity 



of an EME as the number of relations between atomic entities. For example, entities 
(e.g., customer) are the least complex EMEs as they refer to a single concept. Entity 
attributes such as customer.name establish a binary relation between an entity and its 
attribute and therefore have a higher structural complexity than entity EMEs. Relations, 
e.g., (customer, orders, order) relate three atomic entities in a triple being thus more 
complex than entity attribute EMEs. Relation attributes and relation cardinalities are the 
most structurally complex EMEs as they express more knowledge that relation EMEs. 

RQ3: What are alternative expert sourcing task designs? Based on lessons learned 
from the analysis of the collected data, we want to identify new task design strategies 
that could address the limitations of the current design and lead to better results. 

4 Feasibility Study Setup 

The analysis reported in this paper relies on data collected in a large-scale feasibility 
study of the CSI-process which was described in [9-11]. Figure 3 shows the overall 
experiment design with three study groups: Study group A conducts two stages of the 
CSI process, i.e., a text analysis and a model analysis; Study group B performs similar 
tasks in a different sequence; finally Study group C performs a traditional inspection 
process as a control group. All study groups received a tutorial at the beginning of the 
experiment run. Because the main goal is to investigate the effects on eliciting Expected 
Model Elements (EMEs) we focus on Study group A and B in this paper (Study group 
C does not include a task to explicitly identify and report EMEs – thus, we excluded this 
study group in the rest of the paper). Note that analysis results of all study groups have 
been described in [9-11]. 

Tutorial 
Group A

Text Analysis
Group A

Model Analysis
Group A

Model Analysis 
Group B

Text Analysis
Group B

Tutorial
Group C Traditional Inspection (Group C)

30 min 60 min 60 min

Crowdsourcing-Based Inspection (CSI)

Traditional Best-Practice Inspection (Pen&Paper, P&P)

120 min

Tutorial 
Group B

Study Group A (Text Analysis  Model Analysis)

Study Group B (Model Analysis  Text Analysis)

30 min 60 min 60 min

30 min

Study Group C (Best-Practice Inspection)
Out of Scope 
in this paper

 
Figure 3: Feasibility Study Setup [9]. 

In context of this paper, the study design for EME elicitation consists of two main 
groups A and B performing the two stages of the CSI process. For group A and B, we 
applied a cross-over design, i.e., text analysis (60 min) followed by the model analysis 
(60 min) for group A and similar tasks in an inverse order for group B. This cross-over 
design was chosen in order to address one of the goals of the overall study, namely to 
assess the impact of previous domain knowledge on the defect detection performance of 



the inspectors. In other words, we want to compare defect detection performance for 
inspectors that have read the specification beforehand (group A) with the performance 
of inspectors that detect defects only based on the EMEs and the model (group B).  The 
time inspectors spent on each task was limited to one hour per task to (a) investigate the 
impact of splitting larger tasks into smaller pieces of work – a key capability of HC&C 
approaches, (b) enable efficient defect task execution (prior pilot runs showed that 1h is 
sufficient to enable efficient EME identification and defect detection), and (c) to have a 
manageable experiment duration. Note that the size of the inspection artifact under 
investigation is suitable for a two hour inspection task, evaluated during pilot runs. 

Common to all study groups is a tutorial (30 min) related to the method applied 
including a small practical example to get familiar with methods under investigation and 
related tool support. For the model analysis we used a pre-defined set of EMEs to avoid 
dependencies between different tasks within the experiment groups. These EMEs were 
provided by the experiment team, i.e., the authors. We used different experimental 
material for the tutorials (application domain: parking garage scenarios) and the 
experiment (application domain: restaurant scenarios). 

Study Population. The study was an integral part of a university course on “Software 
Quality Assurance” with undergraduate students at Vienna University of Technology. 
We captured background experience in a questionnaire before the study. Because most 
of the participants work at least part time in industry, we consider the participants as 
junior professionals [11]. We applied a class-room setting with an overall number of 75 
participants (63 crowd workers and 12 inspectors) which attended 4 experiment 
workshops organized on different days. The group assignment was based on a random 
distribution of participants to study groups. Overall we had 12 study groups (four groups 
A, four groups B, and four croups C) during the 4 experiment workshops. Note that 
group C has been excluded from the analysis in context of this paper.  

Study Material. We used study materials from a well-known application domain, i.e., 
typical scenarios and processes of a restaurant to avoid domain-specific knowledge 
limitations. The core study material were (a) a textual reference document, i.e., a system 
requirements specification including 3 pages in English language and consisting of 7 
scenarios and (b) an Extended Entity Relationship (EER) diagram including 9 entities, 
13 relationships, and 32 attributes. Furthermore, we used an experience questionnaire to 
capture background skills of the participants and feedback questionnaires after each step 
of experiment process. Finally, we provided guidelines that drove the experiment and 
the inspection process. 

Gold Standard EMEs. The authors of the study identified 110 EMEs representing 
entities, relations, entity and relation attributes as well as relation multiplicities, which 
together constitute a set of Gold Standard EMEs (see some examples of EMEs from the 
Gold Standard in Table 1). For each type of EME, authors identified 4 categories: 

1. Correct EMEs as those that appear in the EER model (EME Type 1). 

2. Synonyms and lexical variants of correct EMEs (EME Type 2).  

3. Correct variants of modeling that are different from the input model, i.e., the textual 
requirements specification (EME Type 3).  

4. Wrong EMEs which should not be part of a correct model (e.g., superfluous) (EME 
Type 4).  



Tooling. The CrowdFlower application has been used to drive the text and model 
analysis tasks. For the text analysis, the specification document was divided in sentences 
and participants were asked to identify EMEs in one sentence at a time. The 
corresponding CrowdFlower task contained as set of instructions and a form-based input 
space. The instructions explained the task in general, provided an introductory paragraph 
about the system that needs to be built, contained EME examples including an 
explanation of their specification syntax as well as some examples of sentences (from 
another domain) and the EMEs extracted from those sentences. The instructions are 
available for each task, but the instruction pane can be minimized for optimal viewing. 
The data collection space listed a sentence and provided forms for collecting the different 
EME types. Under each form, instructions were repeated about the expected naming 
convention and syntax. 

Table 1: Example EME's from the Gold Standard. 

EME Type 1: “Correct EMEs as those that appear in the EER model” 

Entities: customer; order; invoice; setMenu 
Relations: (customer, orders, order) 

(order, orderedFoodItem, foodItem) 
Entity / Relation Attribute customer.name 

invoice.sum 
(customer, orders,order).date 
(ingredient, isProcuredBy, shoppingTour).price 

Relation Cardinalities (customer(1), orders,order(0..n)) 
(order (0..n), orderedFoodItem, foodItem (0..n)) 

EME Type 2: “Synonyms and lexical variants of correct EMEs.” 

Entities: person; menu 
Relations: (foodItem, partOf, order) 

(order, has, foodItem 
Entity / Relation Attribute Invoice.amount 

order.date 
(shoppingList, contains, ingredient).price 

Relation Cardinalities (customer(1), orders, order(n)) 

EME Type 3: “Correct variants of modeling different from the input model” 

Entities: dailyPlan; payment 
Relations: (foodItem, has, foodItemPrice) 

Entity / Relation Attribute order.status 
invoice.paid_date 
(customer, orders,order).status 

Relation Cardinalities customer(1), cancels, order(0..n)) 



EME Type 4: “Wrong EMEs which should not be part of a correct model” 

Entities: cook; restaurant; guest 
Relations: (order, contains, ingredient) 

Entity / Relation Attribute food.calorie 
table.seats 
(order, has, ingredient).amount 

Relation Cardinalities (customer(1..n), orders,order(1)) 
 

Table 1 presents examples for identified EMEs based on the identified categories. Figure 
4 illustrates and example implemented in the Crowdflower User Interface to identify 
EMEs as a crowdsourcing task. Note that we provided a so-called “Output language”, 
i.e., a data format that unifies the data input from experiment participants.  

 
Figure 4: CrowdFlower task interface (form-based data collection). 

5   Experimental Results 

For the initial data analysis process we focus on the evaluation of data collected within 
one of the 4 experiment workshops by groups A and B participating in this workshop. 
Individual workshops were self-contained events and had similar numbers of 
participants as depicted in Table 2; the 6 participants of Group A received 14 sentences 
to process while the 7 participants of Group B worked on 17 sentences.  



Table 2. Overview of experimental results in terms of identified EMEs (before / 
after aggregation) as well as precision & recall with respect to gold standard EMEs. 

 

Table 2 also contains statistics about the actual numbers of EMEs collected from all 
participants before applying algorithms to aggregate individual contributions to each 
sentence as described in sections 5.1 and 5.2 (see corresponding Aggregation heading). 
Overall, when merging data from groups A and B, we collected 440 individual entity 
EME suggestions, which correspond to 76 syntactically unique entity EMEs. Entity and 
relation attributes accounted to 375 EMEs, out of which 270 were syntactically unique. 
Lastly, we obtained 282 relationship EMEs, with 240 syntactically unique values. An 
immediate observation here is that the number of recommended entities decreases as 
EMEs get more complex. At the same time, the percentage of unique EMEs from all 
EMEs is decreasing which is due to the following two factors: (1) syntactic 
heterogeneity increases with more complex EMEs and therefore they cannot be 
aggregated with syntactic string matching; (2) there is also an increased modeling 
heterogeneity, as participants might adapt different modeling approaches for the same 
information, thus hampering reaching consensus. 

 Group A Group B Group A+B 

Number of sentences 14 17 31 
Group participants 6 7 Not relevant 

Entity EMEs 

All (unique) entity EMEs 201 (42) 239 (43) 440 (76) 

Entity EMEs from all 
sentences (unique) 

25 (11) 37 (13) 62 (17) 

Precision 91% 92% 88% 

Recall 88% 88% 100% 

Entity and Relation Attribute EMEs 

All (unique) attribute EMEs 137 (104) 238 (171) 375 (270) 

Attribute EMEs from all 
sentences (unique) 

17 (14) 28 (26) 45 (37) 

Precision 100% 100% 100% 

Recall 15% 43% 59% 

All (unique) relation EMEs 114 (97) 168 (145) 282 (240) 



5.1 Identification of ENTITY Model Elements 

This section discusses the analysis of the entity type EMEs by both groups A and B. 

Aggregation. The aggregation of EMEs suggested by individual participants took 
place at the level of each sentence. From the entity EMEs provided by all participants in 
the group for a given sentence, only the EMEs that were recommended by more than 
half of the participants were selected. In practical terms, we counted the frequency of 
each entity EME and computed a popularity score by dividing this frequency to the 
number of participants that rated the corresponding sentence. EMEs with popularity 
score higher than or equal to 0.5 were selected. To identify the EME output of a group, 
we created the union of sentence level entity EMEs, and selected the unique EMEs from 
these. Note that, in the case of entity EMEs, recommended EMEs were not pre-processed 
neither syntactically nor semantically. For example, we did not correct typos and did not 
stem the EMEs from plural to singular form. This means, that the EMEs “ingredient” 
and “ingredients” were treated as two syntactically different EMEs. For the final set of 
EMEs, we mapped these to the gold standard to determine their type (i.e., 1- correct 
EME, 2-synonym EME, 3-alternative EME, and 4-incorrect EME). Based on this 
mapping we computed the precision of the final EME set as the ratio between the EMEs 
of type 1-3 (i.e., correct of syntactic/semantic variations) and all identified EMEs. 

For group A of the investigated workshop, a total of 25 EMEs were derived from 14 
sentences based on contributions from 6 participants, corresponding to 11 unique EMEs. 
Based on the alignment to the gold standard we obtained precision of 91% (only 1 of 11 
entities was wrongly identified). Recall was computed with respect to the 9 EMEs of 
type “1” (i.e., those EMEs that are part of the EER diagram). All EMEs were identified 
except “recipe”, leading to a recall of 88%. 

Group B, received more sentences therefore lead to the identification of more 
sentence level EMEs (37), corresponding to 13 unique EMEs in the final EME set, a 
precision value of 92% and recall of 88% (as in the case of group A, a single EME from 
the gold standard was not found, namely “invoice”).  

 Joining the results of the two groups to obtain the EMEs for the entire reference 
document, we obtain a precision of 88% and a recall of 100%. Interesting observations 
to be drawn from here are as follows. Almost the entire set of entity EMEs was identified 
by each group although each group received just half of the sentence corpus (due to the 
cross-over design), since key entities are mentioned through the sentences. Exploiting 
such repetition could lead to more elegant task designs for crowdsourcing entity 
identification.  

5.2 Identification of Entity and Relation ATTRIBUTE Model Elements 

This section discusses the analysis of the entity attribute and relation attribute type EMEs 
collected from both groups A and B. 

Aggregation. In the case of entity and relation attributes, participants contributed a 
large variation of syntactically diverse EMEs. Indeed, in group A, from 137 contributed 
EMEs (100 entity attributes, 37 relation attributes) contributed by all participants for 



all sentences, 104 were unique EME strings (73 entity attributes, 31 relation attributes). 
Therefore, given this high syntactic variation, an automatic aggregation per sentence as 
performed in the case of entity EMEs was not possible. Instead, we have inspected the 
proposed EMEs per sentence and replaced syntactic variations of the same EME to 
allow for aggregation. For example, for sentence Sc6S1 (the first sentence in scenario 
6), participants contributed EMEs such as: order.fullfilled, foodOrder.isFulfilled, 
order.fulfilledAsPlanned which were all replaced with their semantic equivalent 
order.fulfilled?. Aggregation in terms of majority voting was performed then on the 
new set of EMEs. As for entity EMEs, the agreement threshold was kept at 0.5. 

For Group A, a total of 17 attribute EMEs resulted from the sentence level majority 
voting, 14 of these were unique. All resulting EMEs were of type 1, 2, or 3, therefore 
the precision was 100%. However, when compared to the proposed gold standard of 39 
attribute EMEs of type 1, only 6 of these were identified, leading to a recall of 15%. 

From Group B, 28 attribute EMEs were collected, 26 of these being unique and all 
of type 1, 2, or 3. Therefore precision was 100%, while recall was 43% (17 of the 
identified EMEs corresponded to group 1 EMEs from the gold standard).  

When merging the output EME sets from groups A and B, the EME set contains 45 
EMEs out of which 37 are unique. We observe here that, unlike in the case of the entity 
EMEs, the overlap between the attribute EMEs derived by the two groups is quite low, 
as different parts of the specification point to different attributes. As a consequence, the 
recall of the overall EME set is 59% (23 EMEs correspond to EMEs from the gold 
standard). 

6   Discussion and Limitations 

This section focuses on the discussion of individual results towards the introduced 
research questions and addresses limitations and threats to validity. 

6.1 Discussion 

Answering our first research question (RQ1:  What is the overall quality of the CSI-
based EME identification?), we conclude that the process of distributed identification 
of EMEs following HC&C principles is feasible and leads to a set of EMEs that have a 
high overlap with a manually created gold standard set of EMEs.  

Our second research question, RQ2, focused on: What are performance differences 
when identifying different types of EMEs? Based on our analysis, we conclude that the 
performance of verifying EMEs varies depending on the EME type: 

• Entity type EMEs were identified with a high recall (100%, see Table 2) and 
precision (88%). We also observed that, since EME’s are mentioned through the 
specification, a reliable set of EMEs can be extracted even just from half of the 
specification by either of the two study groups. This prompts to the possibility to 



change task design in order to more efficiently use human processing when 
identifying entity EMEs.  

• Attribute (and relation) type EMEs were identified with a high precision (100%), 
but with a low recall (59%) because the syntactic and semantic variations of these 
EMEs are considerably higher than for entity EMEs. Because of this syntactic 
heterogeneity, free-text collection makes aggregation with automatic tools not 
feasible and opens the need for more guided task design to enable such automation 
in the future. 

• The number of proposed EMEs decreased as the complexity of the EMEs increased. 
That is, while many entity EMEs were proposed (404), participants provided less 
entity attributes or relation attributes (375) and relations (282). Potential reasons for 
this phenomenon are: (1) the cognitive overload of the task is too high, as the 
participants are asked to do too much and therefore naturally provide less input for 
the more complex parts of the task; (2) writing down complex EMEs such as 
relations is too time-consuming and requires high effort so participant avoid it.  

From the overall CSI-process perspective, the high precision of the entire EME set 
means that this set can act as a reliable guidance for defect detection in the follow-up 
model analysis task. To further improve the EME detection task and to answer RQ3 
(What are alternative expert sourcing task designs?), we propose a novel text analysis 
task design in Section 7.  

6.2. Limitations and Threats to Validity 

Internal validity concerns a causal relationship between the experiment treatment 
and the observed results, without the influence of potential confounding factors that are 
not controlled or measured [12]. Domain specific issues have been addressed by 
selecting a well-known application domain. The experiment package was intensively 
reviewed by experts to avoid errors. Furthermore, we executed a set of pilot runs to 
ensure the feasibility of the study design [9, 10, 11].  

In terms of external validity, that is the generalization of the results to a larger 
population or to a different environment [12], we distinguish the following threats:  
Participants were 75 undergraduate students of computer science and business 
informatics at Vienna University of Technology. The study was a mandatory part of 
the course on “Software Quality Assurance”. Most of the participants work at least part-
time in software engineering organizations. Thus, we consider them as junior 
professionals comparable to industrial settings. We used an experience questionnaire 
to capture and assess prior experiences and skills. Application domain. We used typical 
scenarios and requirements derived from restaurant processes. Thus, all participants are 
familiar with this application domain. Quality of specification documents. Admittedly, 
we have used a high quality specification document which has been carefully reviewed 
by the experiment team, i.e., the authors, during the preparation for the study. In 
addition we executed pilot runs of the study to ensure the quality and understandability 
of the study material.  



7   Lessons Learned for Text Analysis Task Design 

Lessons learned from this initial analysis of EMEs collected in a distributed manner 
prompt to several improvements at task design level, as follows (and in response to 
RQ3): 

 
• Process Improvement: Introduce a workflow of simpler tasks. One way to 

overcome the complexity of the current task which hampers the acquisition of more 
complex EMEs, is to divide the task into a workflow of smaller tasks, each 
focusing on the acquisition of one EME type only.  

 
• Tooling: Replace free-text input tasks with more guided interfaces. The structural 

complexity of the collected EMEs has an influence on two key factors. First, the 
higher input effort discourages participants from adding these EMEs, so less EMEs 
are collected. Second, the syntactic and semantic variation increases in such 
manner that reaching a consensus and automatic aggregation of these EMEs to 
allow majority voting become challenging and in some cases unfeasible. Replacing 
free-text input fields with more guided interfaces could overcome these limitations 
and (1) help EME aggregation while (2) fostering consensus building.  

 
• Reduce redundancy. In the case of entity EMEs, these are frequently mentioned in 

several sentences of the specification and therefore lead to the redundant 
identification of EMEs at the cost of the participants’ time and effort. Task design 
for entity EMEs should take this into consideration and try to reduce the redundant 
identification of EMEs. 

 
Based on these envisioned improvements, we propose an updated workflow for 

distributed identification of EMEs, as shown in Figure 5. The process starts with a 
collection of sentences from the specification which serves as input to the Entity 
Identification task to identify entity EMEs. To reduce redundancy of EME identification, 
we envision a task design where an initial set of EMEs are identified and aggregated 
from a subset of the sentences and then this set is subsequently approved and if necessary 
extended by participants.  

Even with the current design (see Figure 1), entity identification leads to a high quality 
and high coverage entity EME set. This can be used as an input to subsequent tasks for 
entity attribute and relation identification.  

The Entity Attribute Identification task will consist of participants receiving a 
sentence and an entity EME in this sentence and being asked to enumerate attributes of 
that entity EME. For entities that appear in more sentences, two approaches could be 
considered. Firstly, if a high EME set coverage is desired, then this EME should be 
shown with all sentences it appears in as different sentences are likely to describe 
different attributes of the entity EME. Secondly, if fast execution is more desired than 
good coverage, the sentence to be shown could be determined according to the voting 
score obtained. In other words, a sentence where an entity EME was selected by many 
participants would be considered as most suitable for that EME and the EME would be 
shown only in combination with that sentence. 



Each Relation Identification task would receive a sentence with a set of entity EMEs 
in this sentence and could be designed in diverse ways. In the first variant, participants 
could be asked to provide those entity pairs between which a relation exists as free text 
input following a recommended syntax (with or without naming the relation). In the 
second variant, all combinations of entity EME pairs from a sentence could be generated 
and participants asked to select only those pairs between which a relation holds. This 
second variant has a lower effort on participants and results are easier to integrate based 
on selections as opposed to free-text inputs from the first variant. 

 
Figure 5: Proposed workflow for distributed EME identification. 

Lastly, the Relation Attribute Identification task would benefit from the output of the 
Relation Identification task. For a given sentence and relation in this sentence, 
participants should identify potential relation attributes described in the sentence. The 
proposed and improved workshop process (see Figure 5) aims at guiding participants 
and foster reaching consensus to a set of EMEs that can be subsequently used as input 
to the Model Analysis task of the CSI process. While inspecting the data, we identified 
in the collected responses diverse modeling choices, such as the following examples: 

 
• (customer(1) , orders , order(0..n)).isTakeout versus order.isTakeout; 
• (customer(1) , has , order(0...n)).orderNumber versus order.number; 
• (setMenu , contains , foodItem).price vs. setMenu.price and foodItem.price. 
 
With the current design, less popular modeling choices will be lost in favor of those 

that the majority agrees on. Yet, harvesting diverse ways to model the same 
specification could be beneficial for other contexts, for example when building a model 
rather than verifying a given model. In this context, a crowdsourcing process could 
identify, from a specification different models that capture a variety of views. For that 
purpose, new workflows should be considered that focus on preserving modeling 
diversity as opposed of building consensus.  



8   Conclusion and Future Work 

In this paper, we focus on interpreting results from the Text Analysis step of the 
CrowdSourcing-based Inspection (CSI) process [9, 10] which supports early defect 
detection of large-scale software engineering artifacts and models based on textual 
system specifications. The goal of the Text Analysis step is the distributed identification 
of Expected Model Elements (EMEs) within the system specification. EME terms 
represent important model elements derived from a reference document and are used as 
an input in the subsequent Model Analysis step of CSI where the defect detection in 
software engineering models takes place.  

We analysed a subset of the data collected in a large-scale feasibility study of CSI, 
focusing on the comparison of the EMEs collected in a distributed fashion with a gold 
standard set of EMEs created by a single expert. Our key finding was that the text 
analysis task can lead to a highly precise set of EMEs which can serve as a suitable input 
for the defect detection tasks in the Model Analysis phase of CSI. However, while the 
precision of EME set is high, its recall is low for EMEs other than entities. Indeed, when 
harvesting more complex EMEs (e.g., entity and relation attribute), study participants 
provided a wide range of syntactically diverse EMEs. These leads to two difficulties. 
First, automatic result aggregation is challenging. Second, even after manually mapping 
syntactic variants of EMEs to a base form, we noticed difficulties in reaching a 
consensus as participants provided different EMEs based on diverse modelling views.  

We concluded that these limitations are a side-effect of the current task design, which 
is too complex and not sufficiently guided to help consensus building. Therefore, we 
propose a new task design which is based on a workflow of simpler tasks, each focusing 
on the acquisition of one entity type. Also, we propose that these tasks are more guided: 
we start with the acquisition of entity EMEs which can be acquired with high recall and 
precision and use these to guide the following tasks. To support automatic aggregation 
of results, where possible, we replace free-text input with selection from a set of EMEs 
derived from previous steps. 

Future Work. This paper reports on preliminary findings after initial manual analysis 
of a subset of the data. Lessons learned from this manual stage will serve to define 
automatic processing scripts that can be used to (semi-)automatically interpret the rest 
of the data and more reliably verify the results of this paper. Follow-up experiments will 
also test the newly proposed task design with respect to improving the effectiveness of 
EME identification. We will also apply the results of this work to the task of model 
acquisition from textual specifications. In particular, here we are interested in 
investigating diverse types of workflows, namely those that foster EME set diversity as 
opposed to fostering consensus.  
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